已知函數(shù)

(1)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍;

(2)令,是否存在實數(shù),當時,函數(shù)的最小值是3,若存在,求出的取值;若不存在,說明理由.

 

【答案】

(1).   (2)存在實數(shù),使得當時,函數(shù)的最小值是3.

【解析】(1) 由題意得在[1,2]上恒成立,然后轉化為在[1,2]上恒成立,再利用二次函數(shù)的性質求解即可.

(2) 本小題屬于存在性問題,應先假設存在實數(shù),使有最小值3,然后利用導數(shù)求其最小值,然后建立關于a的方程求解即可驗證是否存在

(1)由題意得在[1,2]上恒成立,令

,有,得,得.

(2)假設存在實數(shù),使有最小值3,由題知

時,上單調(diào)遞減,,

(舍去)

時,上單調(diào)遞減,在上單調(diào)遞增,所以

,所以,滿足條件;

時,,上單調(diào)遞減,,

(舍去).

綜上,存在實數(shù),使得當時,函數(shù)的最小值是3.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年河北衡水中學高三上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式數(shù)學公式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù),

(1)若函數(shù)在[l,+∞]上是增函數(shù),求實數(shù)的取值范圍。

(2)若=一的極值點,求在[l,]上的最大值:

(3)在(2)的條件下,是否存在實數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個交點,若存在,求出實數(shù)b的取值范圍:若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年廣東省韶關市田家炳中學、乳源高級中學聯(lián)考高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年廣東省華南師大附中高三綜合測試數(shù)學試卷3(理科)(解析版) 題型:解答題

已知函數(shù),
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>

同步練習冊答案