分析:由f(x)=x
2-2kx+k=(x-k)
2+k-k
2,對稱軸x=k,①當(dāng)k≤0時,函數(shù)f(x)在[0,1]上單調(diào)遞增,當(dāng)x=0時,函數(shù)有最小值f(0);②當(dāng)0<k<1時,函數(shù)f(x)在[0,k)單調(diào)遞減,在(k,1]單調(diào)遞增,當(dāng)x=k時函數(shù)有最小值;③當(dāng)k≥1時,函數(shù)f(x)在[0,1]上單調(diào)遞減,當(dāng)x=1時,函數(shù)有最小值f(1,結(jié)合已知可求
解答:∵f(x)=x
2-2kx+k=(x-k)
2+k-k
2,對稱軸x=k
①當(dāng)k≤0時,函數(shù)f(x)在[0,1]上單調(diào)遞增,當(dāng)x=0時,函數(shù)有最小值f(0)=k=
,不符合題意
②當(dāng)0<k<1時,函數(shù)f(x)在[0,k)單調(diào)遞減,在(k,1]單調(diào)遞增,當(dāng)x=k時函數(shù)有最小值k-
,解可得k=
,符合題意
③當(dāng)k≥1時,函數(shù)f(x)在[0,1]上單調(diào)遞減,當(dāng)x=1時,函數(shù)有最小值f(1)=1-k=
,解可得k=
不符合題意
綜上可得,k=
故答案為:
點評:本題主要考查了二次函數(shù)在閉區(qū)間上的最值的求解,解決此類問題的關(guān)鍵是確定函數(shù)在所給區(qū)間的單調(diào)性,而當(dāng)單調(diào)性不確定時,需要分類討論