如圖,PD垂直正方形ABCD所在的平面,AB=PD=2,動(dòng)點(diǎn)E在線段PB上,則二面角E-AC-B的取值范圍是( )

A.
B.
C.
D.
【答案】分析:由已知中PD垂直正方形ABCD所在的平面,AB=PD=2,動(dòng)點(diǎn)E在線段PB上,由圖可得當(dāng)E點(diǎn)與B點(diǎn)重合時(shí),二面角E-AC-B取最小值,當(dāng)E點(diǎn)與P點(diǎn)重合時(shí),二面角E-AC-B取最大值,分別求出二面角的大小,即可得到答案.
解答:解:當(dāng)E點(diǎn)落在B點(diǎn)上時(shí),二面角E-AC-B的平面角大小為0
當(dāng)E點(diǎn)落在P點(diǎn)上時(shí),二面角E-AC-B的平面角大小為
故二面角E-AC-B的取值范圍是[0,]
故選A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,要求二面角E-AC-B的取值范圍,關(guān)鍵是弄清楚什么時(shí)候二面角最小,什么時(shí)候二面角最大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<
DP
,
AE
>=
3
3

(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PD垂直正方形ABCD所在的平面,AB=PD=2,動(dòng)點(diǎn)E在線段PB上,則二面角E-AC-B的取值范圍是( 。
A、[0,π-arctan
2
]
B、[0,arctan
2
]
C、[0,
π
2
]
D、[arctan
2
,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年濰坊市三模)(12分)如圖,PD垂直正方形ABCD所在平面,AB=2,EPB的中點(diǎn),,

 

  (1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);

 。2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年新教材高考數(shù)學(xué)模擬題詳解精編試卷(3)(解析版) 題型:解答題

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<,>=
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)必做100題(選修1-2)(解析版) 題型:解答題

如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn),cos<,>=
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.

查看答案和解析>>

同步練習(xí)冊(cè)答案