【題目】下表為年至年某百貨零售企業(yè)的線下銷售額單位:萬元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

【答案】(1) . 預(yù)測年該百貨零售企業(yè)的線下銷售額為萬元.

(2) 可以在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)

【解析】試題分析:(1)第(1)問,直接利用公式求出線性回歸方程,再根據(jù)線性回歸方程預(yù)測. (2)第(2)問,先完成2×2列聯(lián)表,再求出的觀測值,最后下結(jié)論.

試題解析:

(1)由題意得, ,

所以

所以,

所以關(guān)于的線性回歸方程為.

由于,所以當時,

所以預(yù)測2018年該百貨零售企業(yè)的線下銷售額為377.5萬元.

(2)由題可得列聯(lián)表如下:

的觀測值,

由于,所以可以在犯錯誤的概率不超過0.025的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)増長所持的態(tài)度與性別有關(guān).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點坐標為

1)如圖1,斜率存在且過點的直線與圓交于兩點.①若,求直線的斜率;②若,求直線的斜率.

2)如圖2為圓上兩個動點,且滿足中點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù),且滿足, ,數(shù)列滿足),則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理得到下面的散點圖及一些統(tǒng)計量的值

由散點圖知,建立關(guān)于的回歸方程是合理的,經(jīng)計算得如下數(shù)據(jù)

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據(jù)以上信息,建立關(guān)于的回歸方程;

(2)已知這種產(chǎn)品的年利潤的關(guān)系為根據(jù)(1)的結(jié)果,求當年宣傳費年利潤的預(yù)報值是多少?

對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的方程為x2(y2)21,直線l的方程為x2y0,點P在直線l上,過點P作圓M的切線PAPB,切點為A,B.

()APB60°,試求點P的坐標;

()若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當CD=時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知橢圓C:的左右焦點分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點.O為坐標原點.

(1)若直線l過點F1,且|AB|=,求k的值;

(2)若以AB為直徑的圓過原點O,試探究點O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).

1)已知函數(shù)具有性質(zhì),求出對應(yīng)的的值;

2)證明:函數(shù)一定不具有性質(zhì);

3)下列三個函數(shù):,,哪些恒具有性質(zhì),并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDADAB,ABDCADDCAP2,AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一鐵塊高溫融化后制成一張厚度忽略不計、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個矩形(B,C全等),用來制成一個柱體.現(xiàn)有兩種方案:

方案①:以為母線,將A作為圓柱的側(cè)面展開圖,并從B,C中各裁剪出一個圓形作為圓柱的兩個底面;

方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開圖,并從B,C中各裁剪出一個正方形(各邊分別與垂直)作為正四棱柱的兩個底面.

1設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;

2設(shè)的長為dm,則當為多少時,能使按方案②制成的正四棱柱的體積最大?

查看答案和解析>>

同步練習冊答案