已知y=f(x)為一次函數(shù),且f(2),f(1),f(4)成等比數(shù)列,且f(2)=-1.

(1)求F(n)=f(1)+f(2)+…+f(n)(n∈N*)的表達(dá)式;

(2)求F(n)=f(1)+f(2)+…+f(n)的最值.

解:(1)設(shè)f(x)=ax+b(a≠0)由f(2),f(1),f(4)成等比數(shù)列,

∴(a+b)2=(2a+b)(4a+b)化簡得a(7a+4b)=0.

∵f(x)為一次函數(shù),

∴a≠0,∴7a+4b=0.                           ①

又f(2)=-1即2a+b=-1                        ②

聯(lián)立①②解得a=-4,b=7,

∴f(x)=-4x+7.

∴F(n)=-4(1+2+3+…+n)+7n

=-4×

(2)F(n)=-2n2+5n=-2(n-)2+,∴F(n)是關(guān)于n的二次函數(shù),n的取值為正整數(shù),越靠近對稱軸則F(n)的值越大.

∴取n=1時,F(xiàn)(n)最大=3.

隨著n∈N*,n→+∞,F(n)→-∞.

∴F(n)無最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求ω和φ的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州一模)已知函數(shù)f(x)=x-
1n|x|
x2
,則函數(shù)y=f(x)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知函數(shù)f(x)=|1-
1x
|

(I)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域和值域都是[a,b].若存在,求出a,b的值;若不存在,請說明理由;
(II)若存在實數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域為[a,b],值域為[ma,mb](m≠0).求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案