7.某地球儀上北緯60°緯線長度為6πcm,則該地球儀的體積為288cm3

分析 地球儀上北緯60°緯線的周長為6πcm,可求緯圓半徑,然后求出地球儀的半徑,再求體積.

解答 解:由題意:地球儀上北緯60°緯線的周長為6πcm,
緯圓半徑是:3cm,
地球儀的半徑是:6cm;
地球儀的體積是:$\frac{4}{3}$π×63=288cm3,
故答案為:288π.

點評 本題考查球面距離,球的表面積,考查學(xué)生空間想象能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變),再將其縱坐標(biāo)伸長到原來的3倍(橫坐標(biāo)不變)得到的圖象對應(yīng)的函數(shù)解析式為(  )
A.$y=\frac{1}{3}f(2x)$B.y=3f(2x)C.$y=\frac{1}{3}f(\frac{x}{2})$D.$y=3f(\frac{x}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圓C內(nèi)切于扇形AOB,若隨機(jī)在扇形AOB內(nèi)投一點,則該點落在圓C外的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中優(yōu)秀的人數(shù)所占的比例為$\frac{2}{7}$.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”
參考數(shù)據(jù):$\stackrel{∧}{y}$=1.28×10+0.08=12.38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.側(cè)棱長為2的正三棱柱,若其底面周長為9,則該正三棱柱的表面積是( 。
A.$\frac{{9\sqrt{3}}}{2}$B.$16+\frac{{9\sqrt{3}}}{2}$C.$18+\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有一對夫妻有兩個孩子,已知其中一個是男孩,則另一個是女孩的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow$=(cosx,2),x∈R,函數(shù)f(x)=a•b,
(1)當(dāng)x∈[-$\frac{π}{12}$,$\frac{π}{3}$]時,求|a+b|的最大值與最小值;
(2)設(shè)f(α)=$\frac{12}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求tan(2α+$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知x0,x0+$\frac{π}{2}$是函數(shù)f(x)=cos2(wx-$\frac{π}{6}$)-sin2wx(ω>0)的兩個相鄰的零點.
(1)求f($\frac{π}{12}$)的值;
(2)若對任意$x∈[-\frac{7π}{12},0]$,都有f(x)-m≤0,求實數(shù)m的取值范圍.
(3)若關(guān)于x的方程$\frac{{4\sqrt{3}}}{3}f(x)-m=1$在$x∈[{0,\frac{π}{2}}]$上有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcos\frac{π}{4}\\ y=tsin\frac{π}{4}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為$\frac{{{ρ^2}{{cos}^2}θ}}{4}+{ρ^2}{sin^2}θ=1$.
(1)求曲線C的直角坐標(biāo)方程; 
(2)求直線l與曲線C相交弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案