(本題滿分15分)已知函數(shù).
(1)求函數(shù)的圖像在點處的切線方程;
(2)若,且對任意恒成立,求的最大值;
(1); (2)整數(shù)的最大值是3.
【解析】
試題分析:(1)解:因為,所以,
函數(shù)的圖像在點處的切線方程;…………5分
(2)解:由(1)知,,所以對任意恒成立,即對任意恒成立.…………7分
令,則,……………………8分
令,則,
所以函數(shù)在上單調(diào)遞增.………………………9分
因為,所以方程在上存在唯一實根,且滿足.
當(dāng),即,當(dāng),即,…13分
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
所以.…………14分
所以.故整數(shù)的最大值是3.………………………15分
考點:本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,像涉及恒成立問題,往往通過研究函數(shù)的最值達到解題目的。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學(xué) 來源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題
(本題滿分15分)已知點(0,1),,直線、都是圓的切線(點不在軸上).
(Ⅰ)求過點且焦點在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(1,0)作直線與(Ⅰ)中的拋物線相交于兩點,問是否存在定點使為常數(shù)?若存在,求出點的坐標(biāo)及常數(shù);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省揚州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)
已知命題p:,命題q:. 若“p且q”為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知函數(shù).
(Ⅰ)若為定義域上的單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅱ)當(dāng)時,求函數(shù)的最大值;
(Ⅲ)當(dāng),且時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,
(1)當(dāng)直線的斜率為1時,求線段AB的長;
(2)設(shè)點M和點N關(guān)于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分15分)已知直線,曲線
(1)若且直線與曲線恰有三個公共點時,求實數(shù)的取值;
(2)若,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com