正方體ABCD-A1B1C1D1中,E為CC1中點,則異面直線BC1與AE所成角的余弦值為( 。
A、
2
2
B、
5
5
C、
10
10
D、
2
2
3
分析:先通過平移將兩條異面直線平移到同一個起點A,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.
解答:精英家教網(wǎng)解:如圖,連接D1A,D1E,∠D1AE為異面直線BC1與AE所成角,
設(shè)正方體的邊長為1,則D1A=
2
,D1E=
5
2
,AE=
3
2

利用余弦定理得,
cos∠D1AE=
AD12+AE2-D1E2
2AD1•AE
=
2
2
+(
3
2
)2-(
5
2
)2
2
×
3
2
=
2
2

故選:A.
點評:本題主要考查了異面直線及其所成的角,以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習(xí)冊答案