已知,其中,設.
(I) 寫出;
(II) 證明:對任意的,恒有.
【解析】(I)由已知推得,從而有
(II) 證法1:當時,
當x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函
所以對任意的
因此結論成立.
證法2: 當時,
當x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)
所以對任意的
又因
所以
因此結論成立.
證法3: 當時,
當x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)
所以對任意的
由
對上式兩邊求導得
∴
因此結論成立.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高三12月月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),設曲線在點處的切線與軸的交點為,其中為正實數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(3)若數(shù)列的前項和,記數(shù)列的前項和,求.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆福建南安僑光中學高三第三次階段考理科數(shù)學試卷 題型:解答題
已知函數(shù),
(1) 設(其中是的導函數(shù)),求的最大值;
(2) 證明: 當時,求證: ;
(3) 設,當時,不等式恒成立,求的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com