已知,其中,設.

(I) 寫出;

(II) 證明:對任意的,恒有.

【解析】(I)由已知推得,從而有

(II) 證法1:當時,

當x>0時, ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函

所以對任意的

因此結論成立.

證法2: 當時,

當x>0時, ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)

所以對任意的

又因

所以

因此結論成立.

證法3: 當時,

當x>0時, ,所以在[0,1]上為增函數(shù)

因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)

所以對任意的

對上式兩邊求導得

因此結論成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是等比數(shù)列,公比q≠1,已知其中連續(xù)三項恰為某等差數(shù)列的第r項,第2r項,第4r項,則等比數(shù)列{an}的公比q=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有若干顆形狀完全相同的玻璃球,已知其中一顆略重,其余各顆重量均相同,要求
使用天平(不用砝碼)將略重的那顆玻璃球找出來.小龍的方案是:首先任取兩顆放在天平的兩側進行稱量,若天平不平衡,則重的那邊為略重的那顆玻璃球,若天平平衡,則兩顆都取下,從剩下的玻璃球中再任取兩顆放在天平兩側進行稱量,如此進行下去,直到找到那顆略重的玻璃球為止.若小龍恰好在第一次就找出略重的那顆玻璃球的概率為
27

(1)請問共有多少顆玻璃球?
(2)設ξ為找到略重的那顆玻璃球時已稱量的次數(shù),求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)現(xiàn)有若干枚形狀完全相同的硬幣,已知其中一枚略重,其余各枚重量均相同,要求使用天平(不用砝碼),將略重的那枚硬幣找出來.小王的方案是:首先任取兩枚放在天平兩側進行稱量,若天平不平衡,則重的那邊為略重的那枚硬幣:若天干平衡,將兩枚都取下,從剩下的硬幣中再任取兩枚放在天平兩側進行稱量,如此進行下去,直到找到那枚略重的硬幣為止.若小王恰好在第一次就找出略重的那枚硬幣的概率為
29

(I )請問共有多少枚硬幣?
(II)設ξ為找到略重那枚硬幣時己稱量的次數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省高三12月月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),設曲線在點處的切線與軸的交點為,其中為正實數(shù).

(1)用表示;

(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;

(3)若數(shù)列的前項和,記數(shù)列的前項和,求

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建南安僑光中學高三第三次階段考理科數(shù)學試卷 題型:解答題

已知函數(shù),

(1) 設(其中的導函數(shù)),求的最大值;

(2) 證明: 當時,求證:  ;

(3) 設,當時,不等式恒成立,求的最大值

 

查看答案和解析>>

同步練習冊答案