分析 (1)令f(x)=x3-x,g(x)=a(x+1)=2(x+1),畫出函數(shù)f(x),g(x)的圖象,結(jié)合圖象求出F(x)的遞減區(qū)間即可;
(2)根據(jù)a的范圍,在[-1,1]上,F(xiàn)(x)=f(x)=x3-x,求出F(x)的最大值即可.
解答 解:(1)令f(x)=x3-x,g(x)=a(x+1)=2(x+1),
令f(x)=g(x),解得:x=-1或x=2,
畫出函數(shù)f(x),g(x)的圖象,如圖示:
,
顯然x≤1時,f(x)≤g(x),x>1時,f(x)>g(x),
故F(x)=$\left\{\begin{array}{l}{{x}^{3}-x,x≤2}\\{2(x+1),x>2}\end{array}\right.$,
故F(x)在在(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)遞減;
(2)由(1)得:a≥2時,F(xiàn)(x)=$\left\{\begin{array}{l}{{x}^{3}-x,x≤\frac{1+\sqrt{1+4a}}{2}}\\{a(x+1),x>\frac{1+\sqrt{1+4a}}{2}}\end{array}\right.$,
而$\frac{1+\sqrt{1+4a}}{2}$>2,
故在[-1,1]上,F(xiàn)(x)=f(x)=x3-x,
而f(x)在[-1,-$\frac{\sqrt{3}}{3}$)遞增,在(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)遞減,在($\frac{\sqrt{3}}{3}$,1]遞增,
故F(x)的最大值是F(1)=0.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{2}$,$\frac{3}{2}$] | B. | [$\frac{1-\sqrt{2}}{2},\frac{1+\sqrt{2}}{2}$] | C. | [-$\frac{3}{2},\frac{1}{2}$] | D. | [$\frac{-1-\sqrt{2}}{2},\frac{-1+\sqrt{2}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=1,n=1 | B. | m=1,n=2 | C. | m=2,n=1 | D. | m=2,n=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com