已知曲線y=x3+x-2在點P0(-1,-4)處的切線l1,直線l⊥l1,且l也過切點P0.求直線l的方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義求出對應(yīng)切線的斜率和方程,即可得到結(jié)論.
解答: 解:由y=x3+x-2,得:y′=3x2+1,
又∵點P0(-1,-4),
∴切線l1的斜率為4.
∵直線l⊥l1,l1的斜率為4,
∴直線l的斜率為-
1
4
,
∵l過切點P0,
∴直線l的方程為:y+4=-
1
4
(x+1),
即x+4y+17=0.
點評:本題主要考查直線方程的求解,根據(jù)導(dǎo)數(shù)的幾何意義,求出對應(yīng)直線的斜率是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=
1
3
ax3+
1
2
bx2+cx在點A(x,y)處的切線斜率為k(x),且k(-1)=0,對一切實數(shù)x,不等式x≤k(x)≤
1
2
(x2+1)恒成立(a≠0).
(1)求k(1)的值;
(2)求函數(shù)k(x)的表達式;
(3)求證:
1
k(1)
+
1
k(2)
+
1
k(3)
+…+
1
k(n)
2n
n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖線段AB過x軸正半軸上一定點M(m,0),端點A、B到x軸距離之積為2m,以x軸為對稱軸,過A,O,B三點作拋物線.
(1)求拋物線方程;
(2)若
OA
OB
=-1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長是短軸長的兩倍,焦距為2
3

(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)不過原點O的直線l與橢圓C交于兩點M、N,且直線OM、MN、ON的斜率依次成等比數(shù)列,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xoy中,過點C(p,0)的直線與拋物線y2=2px(p>0)相交于A、B兩點.設(shè)A(x1,y1),B(x2,y2
(1)求證:y1y2為定值
(2)是否存在平行于y軸的定直線被以AC為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地某企業(yè)擬招聘一批綜合素質(zhì)較強的員工,參與企業(yè)的建設(shè)與發(fā)展.假定符合應(yīng)聘條件的每個選手還需要依次進行四輪考核,每輪設(shè)有一個問題,能正確回答上一輪問題者進入下一輪考核,否則即被淘汰.已知某應(yīng)聘者能正確回答第一、二、三、四輪問題的概率分別為
3
4
2
3
,
1
2
1
3
且各輪問題能否正確回答互不影響.
(1)求該應(yīng)聘者通過考核未被淘汰的概率.
(2)求該應(yīng)聘者進入第四輪才被淘率的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=-n2+9n+1,
(1)求這個數(shù)列的通項公式;
(2)Tn=|a1|+|a2|+…+|an|(n∈N*),求T11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)集合A,B為全集U的兩個子集,則∁U(A∩B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:
(-2)2
=-2.則命題非P是
 

查看答案和解析>>

同步練習(xí)冊答案