設a∈R,函數(shù)f(x)=ax3-3x2
(Ⅰ)若x=2是函數(shù)y=f(x)的極值點,求a的值;
(Ⅱ)若函數(shù)g(x)=f(x)+f′(x),x∈[0,2],在x=0處取得最大值,求a的取值范圍.
分析:(Ⅰ)導函數(shù)在x=2處為零求a,是必要不充分條件故要注意檢驗
(Ⅱ)利用最大值g(0)大于等于g(2)求出a的范圍也是必要不充分條件注意檢驗
解答:解:
(Ⅰ)f'(x)=3ax2-6x=3x(ax-2).
因為x=2是函數(shù)y=f(x)的極值點,所以f'(2)=0,即6(2a-2)=0,因此a=1.
經驗證,當a=1時,x=2是函數(shù)y=f(x)的極值點.
(Ⅱ)由題設,g(x)=ax3-3x2+3ax2-6x=ax2(x+3)-3x(x+2).
當g(x)在區(qū)間[0,2]上的最大值為g(0)時,g(0)≥g(2),
即0≥20a-24.
故得a≤
6
5

反之,當a≤
6
5
時,對任意x∈[0,2],g(x)≤
6
5
x2(x+3)-3x(x+2)
=
3x
5
(2x2+x-10)
=
3x
5
(2x+5)(x-2)
≤0,
而g(0)=0,故g(x)在區(qū)間[0,2]上的最大值為g(0).
綜上,a的取值范圍為(-∞,
6
5
]
點評:極值點處的導數(shù)等于零是此點為極值點的必要不充分條件,所以解題時一定注意檢驗.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=ax3-3x2
(1)若x=2是函數(shù)y=f(x)的極值點,求實數(shù)a的值;
(2)若函數(shù)g(x)=exf(x)在[0,2]上是單調減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

17、設a∈R,函數(shù)f(x)=2x3+(6-3a)x2-12ax+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=ax3-3x2,x=2是函數(shù)y=f(x)的極值點.
(1)求a的值;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導函數(shù)是f′(x),若f′(x)是偶函數(shù),則以下結論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=ex-ae-x的導函數(shù)為f′(x),且f′(x)是奇函數(shù),則a=( 。
A、0B、1C、2D、-1

查看答案和解析>>

同步練習冊答案