隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為ξ.
(1)求ξ的分布列;
(2)求1件產(chǎn)品的平均利潤(rùn)(即ξ的數(shù)學(xué)期望);
(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?
分析:(1)由題意知,ξ的所有可能取值有6,2,1,-2,利用概率的公式分別求出它們的概率,列成表格即得;
(2)為了1件產(chǎn)品的平均利潤(rùn),只須利用數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望值大小即可;
(3)設(shè)技術(shù)革新后的三等品率為x,再算出用x表示的此時(shí)1件產(chǎn)品的數(shù)學(xué)期望值,列不等關(guān)系解不等式即可.
解答:解:ξ的所有可能取值有6,2,1,-2;P(ξ=6)=
126
200
=0.63
,P(ξ=2)=
50
200
=0.25
P(ξ=1)=
20
200
=0.1
,P(ξ=-2)=
4
200
=0.02

故ξ的分布列為:
ξ 6 2 1 -2
P 0.63 0.25 0.1 0.02
(2)Eξ=6×0.63+2×0.25+1×0.1+(-2)×0.02=4.34
(3)設(shè)技術(shù)革新后的三等品率為x,則此時(shí)1件產(chǎn)品的平均利潤(rùn)為E(x)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29)
依題意,E(x)≥4.73,即4.76-x≥4.73,解得x≤0.03所以三等品率最多為3%
點(diǎn)評(píng):本題主要考查了離散型隨機(jī)變量及其分布列和離散型隨機(jī)變量的期望與方差,屬于基礎(chǔ)題之列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為.⑴求的分布列;⑵求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);⑶經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

隨機(jī)抽取某廠的某種產(chǎn)品200件,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而生產(chǎn)1件次品虧損2萬(wàn)元,設(shè)一件產(chǎn)品獲得的利潤(rùn)為X(單位:萬(wàn)元).

(1)求X的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即X的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品率提高為70%.如果此時(shí)要求生產(chǎn)1件產(chǎn)品獲得的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元.設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

(1)求的分布列;

(2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

(3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(廣東卷) 題型:解答題

(本小題滿分13分)

       隨機(jī)抽取某廠的某種產(chǎn)品200件,經(jīng)質(zhì)檢,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生產(chǎn)1件一、二、三等品獲得的利潤(rùn)分別為6萬(wàn)元、2萬(wàn)元、1萬(wàn)元,而1件次品虧損2萬(wàn)元。設(shè)1件產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)為

       (1)求的分布列;

       (2)求1件產(chǎn)品的平均利潤(rùn)(即的數(shù)學(xué)期望);

       (3)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為1%,一等品提高為70%.如果此時(shí)要求1件產(chǎn)品的平均利潤(rùn)不小于4.73萬(wàn)元,則三等品率最多是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案