設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥1
,則目標函數(shù)z=x+2y的最小值為( 。
A、2B、3C、4D、5
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2
,
平移直線y=-
1
2
x+
z
2
,由圖象可知當直線y=-
1
2
x+
z
2
經(jīng)過點B(1,1)時,直線y=-
1
2
x+
z
2
的截距最小,此時z最小.
此時z的最小值為z=1+2×1=3,
故選:B.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為
 
m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(3,3),
b
=(1,-1),若(
a
b
)⊥(
a
b
),則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記max{x,y}=
x, x≥y
y, x<y
,min{x,y}=
y, x≥y
x, x<y
,設(shè)
a
,
b
為平面向量,則( 。
A、min{|
a
+
b
|,|
a
-
b
|}≤min{|
a
|,|
b
|}
B、min{|
a
+
b
|,|
a
-
b
|}≥min{|
a
|,|
b
|}
C、max{|
a
+
b
|2,|
a
-
b
|2}≤|
a
|2+|
b
|2
D、max{|
a
+
b
|2,|
a
-
b
|2}≥|
a
|2+|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、n是兩條不重合的直線,α,β,γ是三個互不重合的平面,則下列命題正確的( 。
A、若α⊥γ,β⊥γ,m⊥α,則m⊥β
B、若α⊥β,β∥γ,m⊥α,則m∥γ
C、若 α∥β,m∥α,n∥β,則m∥n
D、若α∥β,m∥α,n⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合S={x|x≥2},T={x|x≤5},則S∩T=( 。
A、(-∞,5]
B、[2,+∞)
C、(2,5)
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=2+i,則z1z2=(  )
A、-5B、5
C、-4+iD、-4-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0,-1),則下列向量中與
a
成60°夾角的是(  )
A、(-1,1,0)
B、(1,-1,0)
C、(0,-1,1)
D、(-1,0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(
1
2
x-
π
6
),x∈R.
(1)求f(0)的值;
(2)求f(x)的最小正周期;
(3)設(shè)α,β∈[0,
π
2
],f(2α+
π
3
)=
6
5
,f(2β+
3
)=
24
13
.求sin(α-β)的值.

查看答案和解析>>

同步練習(xí)冊答案