在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底 面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面PAD;
(Ⅱ)求證:BC⊥平面PBD;
(Ⅲ)求四棱錐P-ABCD的體積。
解:(Ⅰ)證明:取PD的中點(diǎn)F,連結(jié)EF,AF,
因為E為PC中點(diǎn),所以EF∥CD,且EF=CD=1,
在梯形ABCD中,AB∥CD,AB=1,
所以EF∥AB,EF=AB,四邊形ABEF為平行四邊形,
所以BE∥AF,
又∵ BE 平面PAD,AF 平面PAD, 所以BE∥平面PAD
(2)
BC⊥BD,又BC⊥PD,BC⊥平面PBD
(3)
【解析】本試題主要考查了線面平行和線面垂直的判定定理和四棱錐的體積的綜合運(yùn)用。
(1)先找到線線平行,BE∥AF,從而利用判定定理得到結(jié)論。
(2)要證明線面垂直,先證明線線垂直,利用判定定理得到結(jié)論。
(3)對于體積的求解關(guān)鍵是求解底面積和體的高,然后得到結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DC,E是PC的中點(diǎn),作EF于點(diǎn)F(Ⅰ)證明PA平面EBD.
(Ⅱ)證明PB平面EFD.
(Ⅲ)求二面角的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com