解法一:(Ⅰ)建立如圖所示的空間直角坐標系設AB=a,
則A
1(0,0,2a),C(0,a,0),C
1(0,a,2a),D(a,0,a)(2分)
于是
=(a,-a,-a),
=(0,a,-2a)
∵cos<
,
>=
=
=
,(6分)
∴異面直線C
1D與A
1C所成的角為arccos
(7分)
(Ⅱ)∵
=(a,0,-a),
=(0,a,0),
∴
•
=a
2+0-a
2=0,
•
=0(10分)
則
⊥
,
⊥
∴A
1D⊥平面ACD(12分)
又A
1D?平面A
1CD,
∴平面A
1DC⊥平面ADC(14分)
解法二:
(Ⅰ)連接AC
1交A
1C于點E,取AD中點F,連接EF,則EF
∥C
1D
∴直線EF與A
1C所成的角就是異面直線C
1D與A
1C所成的角(2分)
設AB=a,
則C
1D=
=
a,
A
1C=
=
a,AD=
=
a.
△CEF中,CE=
A
1C=
a,EF=
C
1D=
a,
直三棱柱中,∠BAC=90°,則AD⊥AC(4分)
CF=
=
=
a(4分)
∵cos∠CEF=
=
=
,(6分)
∴異面直線C
1D與A
1C所成的角為arccos
(7分)
(Ⅱ)直三棱柱中,∠BAC=90°,∴AC⊥平面ABB
1A
1,則AC⊥A
1D(9分)
又AD=
a,A
1D=
a,AA
1=2a,
則AD
2+A
1D
2=AA
12,于是AD⊥A
1D(12分)
∴A
1D⊥平面ACD又A
1D?平面A
1CD,
∴平面A
1DC⊥平面ADC(14分)