函數(shù)f(x)=sin,x∈[-1,1],則( )
A.f(x)為偶函數(shù),且在[0,1]上單調(diào)遞減
B.f(x)為偶函數(shù),且在[0,1]上單調(diào)遞增
C.f(x)為奇函數(shù),且在[-1,0]上單調(diào)遞增
D.f(x)為奇函數(shù),且在[-1,0]上單調(diào)遞減.
【答案】分析:利用誘導(dǎo)公式化簡函數(shù)f(x)的解析式為cosπx,故函數(shù)為偶函數(shù).再由當(dāng)x∈[0,1]時,可得函數(shù)y=cosπx 是減函數(shù),從而得出結(jié)論.
解答:解:∵函數(shù)f(x)=sin=cosπx,故函數(shù)為偶函數(shù),故排除C、D.
當(dāng)x∈[0,1]時,πx∈[0,π],函數(shù)y=cosπx 是減函數(shù),
故選A.
點(diǎn)評:本題主要考查誘導(dǎo)公式、余弦函數(shù)的奇偶性和單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知角a的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關(guān)于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關(guān)于直線x=x0對稱,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(diǎn)(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調(diào)增區(qū)間;
(3)在給定的坐標(biāo)系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個最低點(diǎn)間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
,
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對稱軸間的距離為1,則正數(shù)ω的值等于( 。

查看答案和解析>>

同步練習(xí)冊答案