如圖,長方體ABCD-A1B1C1D1中,ABCD是邊長為1的正方形,D1B與平面ABCD所成的角為45°,則棱AA1的長為
 
,二面角B-DD1-C的大小為
 
考點:二面角的平面角及求法,點、線、面間的距離計算
專題:空間角
分析:連結(jié)BD,BD1,CD1,由題意知∠D1BD=45°,由此能求出棱AA1的長;由已知條件推導出∠BDC是二面角B-DD1-C的平面角,由此能求出二面角B-DD1-C的大。
解答: 解:如圖,連結(jié)BD,BD1,CD1,
∵長方體ABCD-A1B1C1D1中,
ABCD是邊長為1的正方形,
D1B與平面ABCD所成的角為45°,
∴∠D1BD=45°,
AA1=DD1=BD=
2
;
∵CD⊥DD1,BD⊥DD1
∴∠BDC是二面角B-DD1-C的平面角,
∵DC=BC,∠BCD=90°,∴∠BDC=45°,
∴二面角B-DD1-C的大小為 45°.
故答案為:
2
,45°.
點評:本題考查長方體棱長的求法和二面角的大小的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知定點F及定直線l,直線m經(jīng)過F與l垂直,垂足為K,|FK|=p(p>0),動圓P經(jīng)過F與l相切.
(Ⅰ)建立適當?shù)闹苯亲鴺讼担蟪鰟訄A圓心P軌跡C的方程;
(Ⅱ)經(jīng)過點F的直線交(Ⅰ)中軌跡C于A、B兩點,點C在直線l上,且BC⊥l.試問,直線AC與m的交點是否在軌跡C上?若不在,請說明理由;若在,請給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):斜邊長等于斜邊的中線長的2倍.類比上述性質(zhì),直角三棱錐具有性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3   32=1+3+5    42=1+3+5+7
23=3+5   33=7+9+11  43=13+15+17+19
根據(jù)上述分解規(guī)律,則52=1+3+5+7+9,若m3(m∈N+)的分解中最小的數(shù)是183,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果命題“關(guān)于x的不等式x2-ax+1<0的解集是空集”是假命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.則CF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將4個人(含甲、乙)分成兩組,每組2人,則甲、乙分別同一組的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足
AP
AB
AC
(1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一枚骰子先后擲兩次,向上點數(shù)之和為x,則x≥7的概率為(  )
A、
1
2
B、
5
12
C、
7
12
D、
3
4

查看答案和解析>>

同步練習冊答案