已知圓相交于兩點(diǎn),

(1)求公共弦所在的直線方程;

       (2)求圓心在直線上,且經(jīng)過兩點(diǎn)的圓的方程;(13分)

 

解析:(1)(6分)

(2)法1:由(1)得

,即A(-4,0),B(0,2),又圓心在直線上,

設(shè)圓心為M(x,-x)

則|MA|=|MB|,解得M(-3,3),(13分)

法2:圓系法略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=
π6

(I)寫出直線l的參數(shù)方程;
(II)設(shè)l與圓ρ=2相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程)已知直線l的極坐標(biāo)方程為ρsin(θ-
π
4
)
=1,曲線M的參數(shù)方程
x=2cosθ
y=
2
sinθ
(其中θ為參數(shù)),直線l與圓M相交于兩點(diǎn)A、B,則線段AB的長(zhǎng)度是
4
15
3
4
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)請(qǐng)考生在第(1),(2),(3)題中任選一題作答,如果多做,則按所做的第一題記分.
(1)選修4-1:幾何證明選講
如圖,在△ABC中,D是AC的中點(diǎn),E是BD的中點(diǎn),AE的延長(zhǎng)線交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面積為S1,四邊形CDEF的面積為S2,求S1:S2的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),a=
π
6
軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角a=
π
6

( I)寫出直線l的參數(shù)方程;
( II)設(shè)l與圓ρ=2相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若關(guān)于x的不等式f(x)>a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓軸于兩點(diǎn),曲線是以為長(zhǎng)軸,直線為準(zhǔn)線的橢圓.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是直線上的任意一點(diǎn),以為直徑的圓與圓相交于兩點(diǎn),求證:直線必過定點(diǎn),并求出點(diǎn)的坐標(biāo)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案