使|x-4|+|x-3|<a有實(shí)數(shù)解的a的取值范圍是( 。
分析:由已知中的不等式|x-4|+|x-3|<a,我們可以構(gòu)造絕對值函數(shù),根據(jù)絕對值的三角不等式,我們易求出對應(yīng)函數(shù)y=|x-4|+|x-3|的值域,進(jìn)而得到實(shí)數(shù)a的取值范圍.
解答:解:∵|x-4|+|x-3|≥|x-4-x+3|=1,
令y=|x-4|+|x-3|,
則函數(shù)y=|x-4|+|x-3|的值域?yàn)閇1,+∞)
若不等式|x-4|+|x-3|<a有解集
則a>1
故實(shí)數(shù)a的取值范圍是(1,+∞)
故選C.
點(diǎn)評:本題考查的知識(shí)點(diǎn)是絕對值三角不等式、單調(diào)性的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
④對于函數(shù)f(x)=
x-1
x+1
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
正確的個(gè)數(shù)為(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使|x-4|+|x-5|>a對x∈R恒成立的a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)使|x-4|+|x-3|<a有實(shí)數(shù)解的a的取值范圍是
a>1
a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使|x-4|+|x-3|<a有實(shí)數(shù)解,a為(    )

A.a>7                  B.1<a<7                C.a>1                 D.a≥1

查看答案和解析>>

同步練習(xí)冊答案