定義全集U的非空子集P的特征函數(shù)fp(x)=
1,x∈P
0,x∈UP
,這里∁UP表示集合P在全集U的補集.已知A,B均為全集U的非空子集,給出下列命題:
①若A⊆B,則對于任意x∈U,都有fA(x)≤fB(x);
②對于任意x∈U,都有fUA(x)=1-fA(x);
③對于任意x∈U,都有fA∩B(x)=fA(x)•fB(x);
④對于任意x∈U,都有fA∪B(x)=fA(x)+fB(x).
則正確命題的序號為
 
考點:集合的包含關(guān)系判斷及應用
專題:綜合題,集合
分析:根據(jù)題中特征函數(shù)的定義,利用集合的交集、并集和補集運算法則,對①②③④各項中的運算加以驗證,可得①②③都可以證明它們的正確性,而D項可通過反例說明它不正確.由此得到本題答案.
解答: 解:∵fA(x)=
1,x∈A
0,x∈CUA
,fB(x)=
1,x∈B
0,x∈CUB
,
而CUA中可能有B的元素,但CUB中不可能有A的元素
∴fA(x)≤fB(x),
即對于任意x∈U,都有fA(x)≤fB(x)故①正確;
對于B,∵fUA(x)=
1,x∈CUA
0,x∈A
,
結(jié)合fA(x)的表達式,可得fUA(x)=1-fA(x),故②正確;
對于C,fA∩B(x)=
1,x∈A∩B
0,x∈CU(A∩B)
=
1,x∈A
0,x∈CUA
1,x∈B
0,x∈CUB
=fA(x)•fB(x),
故③正確;
對于D,fA∪B(x)=
1,x∈A∪B
0,x∈CU(A∪B)

當某個元素x在A中但不在B中,由于它在A∪B中,故fA∪B(x)=1,
而fA(x)=1且fB(x)=0,可得fA∪B(x)≠fA(x)•fB(x)
由此可得④不正確.
故答案為:①②③.
點評:本題給出特征函數(shù)的定義,判斷幾個命題的真假性,著重考查了集合的運算性質(zhì)和函數(shù)對應法則的理解等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C的中心為原點O,長軸在x軸上,離心率e=
2
2
,又橢圓C上的任一點到橢圓C的兩焦點的距離之和為8.
(1)求橢圓C的標準方程;
(2)若平行于y軸的直線l與橢圓C相交于不同的兩點P、Q,過P、Q兩點作圓心為M的圓,使橢圓C上的其余點均在圓M外.求△PQM的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①始邊和終邊都相同的兩個角一定相等.
②-135°是第二象限的角.
③若450°<α≤540°,則
α
4
是第一象限角.
④相等的兩個角終邊一定相同.
⑤已知cos(-800)=k,那么tan100°=-
1-k2
k

其中正確命題是
 
.(填正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設若f(x)=
lnx
 ,x>0
a+
x
0
(1-cost)dt,x≤0
,f(f(1))=2,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復平面內(nèi)有A,B,C三點,點A對應的復數(shù)為2+i,向量
BA
對應的復數(shù)為2+3i,向量
BC
對應的復數(shù)為3-i,則點C對應的復數(shù)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,若
3+i
z
=1-i,則z的共軛復數(shù)為(  )
A、1-2i
B、2-4i
C、
2
-2
2
i
D、1+2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F(-c,0)(c>0)作圓x2+y2=
a2
4
的切線,切點為E,延長FE交雙曲線右支于點P,若|
OF
|=|
OP
|,則雙曲線的離心率( 。
A、
10
2
B、
10
5
C、
10
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=
3
acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.

查看答案和解析>>

同步練習冊答案