若等差數(shù)列和等比數(shù)列的首項(xiàng)均為1,且公差,公比,則集合 的元素個(gè)數(shù)最多有 個(gè).

 

2

【解析】

試題分析:由題意得:,令則由,當(dāng)時(shí),上單調(diào)增,方程有且僅有一解;當(dāng)時(shí),上單調(diào)減,在上單調(diào)增,方程至多有兩解

考點(diǎn):方程與函數(shù)思想

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省鹽城市高三第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)為數(shù)列的前項(xiàng)和,,,其中是常數(shù).若對(duì)于任意的,,成等比數(shù)列,則的值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷文科數(shù)學(xué)試卷(解析版) 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,,且中,,經(jīng)測(cè)量得到.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過點(diǎn)作一直線交,從而得到五邊形的市民健身廣場(chǎng),設(shè)

(1)將五邊形的面積表示為的函數(shù);

(2)當(dāng)為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二理科數(shù)學(xué)試卷(解析版) 題型:解答題

如果函數(shù)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。

(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;

(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求上有最大值;

(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若交點(diǎn)個(gè)數(shù)為2013,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二理科數(shù)學(xué)試卷(解析版) 題型:填空題

若關(guān)于的不等式的解集中有且僅有4個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二理科數(shù)學(xué)試卷(解析版) 題型:填空題

某商場(chǎng)有四類食品,其中糧食類、植物油類、動(dòng)物性食品類及果蔬類分別有40種、10種、30種、20 種,從中抽取一個(gè)容量為20的樣本進(jìn)行食品安全檢測(cè)。若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)二文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.

(1)求證:BF∥平面ACE;

(2)求證:BF⊥BD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級(jí)部決戰(zhàn)四統(tǒng)測(cè)三數(shù)學(xué)試卷(解析版) 題型:解答題

已知)是曲線上的點(diǎn),,是數(shù)列的前項(xiàng)和,且滿足,

(1)證明:數(shù)列)是常數(shù)數(shù)列;

(2)確定的取值集合,使時(shí),數(shù)列是單調(diào)遞增數(shù)列;

(3)證明:當(dāng)時(shí),弦)的斜率隨單調(diào)遞增

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知復(fù)數(shù),則z的虛部為 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案