16.復(fù)數(shù)z=a2-2+(3a-4)i(a∈R)的實部與虛部相等,且z在復(fù)平面上對應(yīng)的點在第三象限,則a=( 。
A.1B.2C.1或2D.-1

分析 由題意可知解得a=1或2,當(dāng)a=2時,它在復(fù)平面上對應(yīng)的點在第一象限,不符合題意,舍去,即a=1時符合題意.

解答 解:由題意可知:a2-2=3a-4,解得a=1或2,
當(dāng)a=2時,z=2+2i,它在復(fù)平面上對應(yīng)的點在第一象限,不符合題意,舍去,
∴a=1.
故選:A.

點評 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義兩種運算:a⊕b=$\sqrt{{a}^{2}-^{2}}$,a?b=$\sqrt{(a-b)^{2}}$,則f(x)=$\frac{2⊕x}{2-(x?2)}$是( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列程序語句不正確的是( 。
A.INPUT“MATH=”;aB.PRINT“MATH=”;a+b+c
C.y=b-cD.a+b=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對于函數(shù)$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個命題:
①f(x)的單調(diào)遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域為[0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內(nèi)有3個不相等的實根
其中,真命題是①②.(將真命題的序號填寫在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知$acosC+\sqrt{3}asinC-b-c=0$.
(1)求角A的大;
(2)若a=7,b+c=11,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知矩形ABCD中,$AB=\sqrt{2}$,BC=1,現(xiàn)沿對角線BD折成二面角C-BD-A,使AC=1

(I)求證:DA⊥面ABC
(II)求二面角A-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$y=sin({2x+\frac{5π}{2}})$的圖象的一條對稱軸是( 。
A.$-\frac{π}{4}$B.$-\frac{π}{2}$C.$\frac{π}{8}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=x2+2x-a與g(x)=2x+2lnx($\frac{1}{e}$≤x≤e)的圖象有兩個不同的交點,則實數(shù)a的取值范圍是( 。
A.(1,$\frac{1}{{e}^{2}}$+2]B.[$\frac{1}{{e}^{2}}$+2,e2-2]C.(1,e2-2]D.[e2-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.向面積為S的平行四邊形ABCD中任投一點M,則△MCD的面積小于$\frac{S}{3}$的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案