精英家教網 > 高中數學 > 題目詳情
四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分別為AD,PC的中點.
(1)求證:EF面PAB
(2)求證:EF⊥面PBD
(3)求二面角D-PA-B的余弦值.
(1)證明:取PB的中點為M連結AM,MF,因為F為PC的中點,所以FM
.
1
2
BC,又ABCD是平行四邊形,
E為AD的中點,所以AMFE是平行四邊形,
所以EF面PAB.
(2)因為PA=PB=AB=
1
2
AD
,M是PB的中點,所以AM⊥PB,∠BAD=60°,所以AB⊥BD,
因為面PAB⊥面ABCD,所以BD⊥平面PAB,所以AM⊥BD,
又PB∩BD=B,所以AM⊥面PBD.EFAM,
所以EF⊥面PBD.
(3)由(2)可知BD⊥平面PAB,作BN⊥PA于N,
顯然N是PA的中點,連結ND,
則∠BND就是二面角D-PA-B的平面角,
PA=PB=AB=
1
2
AD
=2,所以AN=1,AD=4,BD=
42-22
=
12
,
BN=
22-12
=
3
,所以ND=
(
12
)2+(
3
)2
=
15
,
所以二面角D-PA-B的余弦值為:
BN
DN
=
3
15
=
5
5

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,,.

(1)求證:平面⊥平面;
(2)求點C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F分別是AB,AD的中點,G,H分別是BC,CD上的點,且=2.求證:直線EG,FH,AC相交于一點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一個動點,且滿足|MB|=|MS|,求點M在正方形ABCD內的軌跡;
(II)試問在線段SD上是否存在點E,使二面角C-AE-D的大小為60°?若存在,確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在三棱錐S-ABC中,如圖,∠SAB=∠SAC=∠ACB=90°,AC=2,
BC=
13
,SB=
29

(1)證明:SC⊥BC;
(2)求側面SBC與底面ABC所成的二面角大。
(3)(理)求異面直線SC與AB所成的角的大。ㄓ梅慈呛瘮当硎荆
(文)求三棱錐的體積VS-ABC

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,在三棱錐P-ABC中,D、E分別是BC、AB的中點,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P-BC-A的平面角為γ,則α,β,γ的大小關系是( 。
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,邊長為2的正方形ABCD中,點E、F分別是邊AB、BC上的點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點,求證:EQ⊥平面A′FD
(2)當E、F分別是AB、BC的中點時,求二面角A′-EF-D的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=
2
2
AB.
(Ⅰ)證明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線和平面,則的一個必要條件是(    )
A.,B.,
C.,D.成等角

查看答案和解析>>

同步練習冊答案