已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時(shí)取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對(duì)稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個(gè)不同實(shí)根的實(shí)數(shù)λ的取值范圍為集合A,且兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
分析:(Ⅰ)利用函數(shù)在y軸上的截距為-5,可求得c=-5.根據(jù)函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,可得x=1時(shí)取得極大值,當(dāng)x=0,x=2時(shí)函數(shù)f(x)取得極小值.可知x=0,x=1,x=2為函數(shù)f(x)的三個(gè)極值點(diǎn),
從而f'(x)=0的三個(gè)根為0,1,2,∴由此可求函數(shù)f(x)的解析式;
(Ⅱ)假設(shè)存在對(duì)稱軸方程為x=t,則f(t+x)=f(t-x)對(duì)x∈R恒成立.代入化簡(jiǎn)得(t-1)x3+( t3-3 t2+2t)x=0對(duì)x∈R恒成立,從而可出對(duì)稱軸x=1.
(Ⅲ)x4-4x3+4x2-5=λ2x2-5恰好有三個(gè)不同的根,等價(jià)于x4-4x3+4x22x2=0恰好有三個(gè)不同的根,由于x=0是一個(gè)根,所以方程x2-4x+4-λ2=0應(yīng)有兩個(gè)非零的不相等的實(shí)數(shù)根,從而可求λ的取值范圍.要使m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立,可轉(zhuǎn)化為m2+tm+2≤0對(duì)任意t∈[-3,3]恒成立,構(gòu)造函數(shù)g(t)=tm+m2+2,只要
g(-3)≤0
g(3)≤0
,從而可知不存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立.
解答:解:(Ⅰ)∵函數(shù)f(x)=x4+ax3+bx2+c,在y軸上的截距為-5,∴c=-5.
∵函數(shù)f(x)在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,
∴x=1時(shí)取得極大值,又當(dāng)x=0,x=2時(shí)函數(shù)f(x)取得極小值.
∴x=0,x=1,x=2為函數(shù)f(x)的三個(gè)極值點(diǎn),
即f'(x)=0的三個(gè)根為0,1,2,∴f'(x)=4x3+3ax2+2bx=4x(x-1)(x-2))=4x3-12x2+8x.
∴a=-4,b=4,
∴函數(shù)f(x)的解析式:f(x)=x4-4x3+4x2-5.
(Ⅱ)若函數(shù)f(x)存在垂直于x軸的對(duì)稱軸,設(shè)對(duì)稱軸方程為x=t,
則f(t+x)=f(t-x)對(duì)x∈R恒成立.
即:(t+x)4-4(t+x)3+4(t+x)2-5=(t-x)4-4(t-x)3+4(t-x)2-5.
化簡(jiǎn)得(t-1)x3+(t3-3t2+2t)x=0對(duì)x∈R恒成立.
t-1=0
t 3-3t 2+2t=0 
∴t=1.
即函數(shù)f(x)存在垂直于x軸的對(duì)稱軸x=1.
(Ⅲ)x4-4x3+4x2-5=λ2x2-5恰好有三個(gè)不同的根,即x4-4x3+4x22x2=0恰好有三個(gè)不同的根,
即x2(x2-4x+4-λ2)=0,
∵x=0是一個(gè)根,
∴方程x2-4x+4-λ2=0應(yīng)有兩個(gè)非零的不相等的實(shí)數(shù)根,
∴△=16-4(4-λ2)=4λ2>0,且x1x2=4-λ2≠0,∴λ≠0,-2,2.
若存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立.
∵|x1-x2|=
(x1+x2)2-4x1x2
=2|λ|>0,
要使m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立,只要m2+tm+2≤0對(duì)任意t∈[-3,3]恒成立,
令g(t)=tm+m2+2,則g(t)是關(guān)于t的線性函數(shù).
∴只要
g(-3)≤0
g(3)≤0
解得
1≤m≤2
-2≤m≤-1
,無(wú)解
∴不存在實(shí)數(shù)m,使得不等式m2+tm+2≤|x1-x2|對(duì)任意t∈[-3,3],λ∈A恒成立.
點(diǎn)評(píng):本題考查多項(xiàng)式的導(dǎo)數(shù)、函數(shù)的圖象性質(zhì)、二次方程根的判斷,等價(jià)轉(zhuǎn)換、化歸思想等數(shù)學(xué)思想方法.解題時(shí)對(duì)恒成立問(wèn)題的處理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案