二次函數(shù)y=-x2+4x+t的頂點在x軸上,則t的值是( )
A.-4
B.4
C.-2
D.2
【答案】分析:先對解析式配方得到拋物線的頂點式,求出頂點坐標(biāo),再令縱坐標(biāo)為零求出t的值.
解答:解:∵y=-x2+4x+t=y=-(x-2)2+4+t,
∴二次函數(shù)y=-x2+4x+t的頂點坐標(biāo)是(2,4+t),
∵頂點在x軸上,∴4+t=0,解得t=-4,
故選A.
點評:本題考查了利用配方法求出二次函數(shù)的頂點式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-4x+3在區(qū)間(1,4]上的值域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點O及另一點C,它的頂點B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點A與點C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時,求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-4x+5,分別求下列條件下函數(shù)的值域:
(1)x∈[-1,0];
(2)x∈(1,3);
(3)x∈(4,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•萬州區(qū)一模)二次函數(shù)y=x2的圖角的焦點坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-2x+5的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案