已知橢圓=1,直線l過定點P(1,1).

(Ⅰ)當(dāng)直線l的斜率為時,求橢圓上的點到直線l距離的最大值;

(Ⅱ)直線l與橢圓交于A,B兩點,求|PA|·|PB|的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:高三數(shù)學(xué)教學(xué)與測試 題型:044

已知橢圓=1,直線l=1,P是l上的點,射線OP交橢圓于R,又點Q在OP上且滿足|OQ|·|OP|,當(dāng)點P在l上移動時,求點Q的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東濟寧鄒城二中2011-2012學(xué)年高二上學(xué)期期中質(zhì)檢數(shù)學(xué)理科試題 題型:044

已知橢圓=1(a>b>0),直線l與橢圓交于A、B兩點,M是線段AB的中點,連接OM并延長交橢圓于點C.直線AB與直線OM的斜率分別為k、m,且km=-

(1)求b的值;

(2)若直線AB經(jīng)過橢圓的右焦點F,問:對于任意給定的不等于零的實數(shù)k,是否存在a∈[2,+∞),使得四邊形OACB是平行四邊形,請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(山東卷) 題型:044

如圖,已知橢圓=1(a>b>0)的離心率為.以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點時該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點.直線PF1和PF2與橢圓的焦點分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程:

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1,k2,證明:k1·k2l;

(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓=1(ab>0)過點(1,),離心率為,左、右焦點分別為F1、F2.點P為直線lxy=2上且不在x軸上的任意一點,直線PF1PF2與橢圓的交點分別為ABC、DO為坐標(biāo)原點.

(1)求橢圓的標(biāo)準(zhǔn)方程.

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.

(ⅰ)證明:=2.

(ⅱ)問直線l上是否存在點P,使得直線OA、OB、OCOD的斜率kOAkOB、kOC、kOD滿足kOAkOBkOCkOD=0?若存在,求出所有滿足條件的點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案