11.給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無(wú)實(shí)根”的否命題;
②命題“在△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則$\root{3}{a}>\root{3}>0$”的逆否命題;
④“若m≥1,則mx2-2(m+1)x+(m+3)>0的解集為R”的逆命題.
其中真命題的序號(hào)為( 。
A.①②③B.①②④C.②④D.①②③④

分析 根據(jù)題意,按照要求寫出命題①、②、③、④的否命題、逆命題或逆否命題,再判定它們是否正確.

解答 解:①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無(wú)實(shí)根”的否命題是“若b2-4ac≥0,則方程ax2+bx+c=0(a≠0)有實(shí)根”,是正確的;
②命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題是“△ABC是等邊三角形,則AB=BC=CA”,是正確的;
③命題“若a>b>0,則$\root{3}{a}>\root{3}>0$”是正確的,∴它的逆否命題也是正確的;
④命題“若m≥1,則mx2-2(m+1)x+(m+3)>0的解集為R”的逆命題是“若mx2-2(m+1)x+(m+3)>0的解集為R,則m≥1,
∵不等式的解集為R時(shí),
∴$\left\{\begin{array}{l}{m>0}\\{4(m+1)^{2}-4m(m+3)<0}\end{array}\right.$的解集為m>1,∴逆命題是錯(cuò)誤的;
∴正確命題有①②③;
故選:A

點(diǎn)評(píng) 本題考查了四種命題之間的關(guān)系以及命題真假的判定問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$f(x)=\frac{e^x}{{{x^2}+a}}({a>0})$的兩個(gè)極值點(diǎn)分別為x1,x2(x1<x2),則ax2取值范圍是( 。
A.(0,1)B.(0,2)C.$({1,\frac{32}{27}}]$D.$({0,\frac{32}{27}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.有6個(gè)人排成一排照相,要求甲、乙、丙三人站在一起,則不同的排法種數(shù)為(  )
A.24B.72C.144D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.根據(jù)下列條件解三角形:
(1)A=30°,B=105°,c=$\sqrt{2}$;
(2)a=14,b=7$\sqrt{6}$,B=60°;
(3)b=47,c=38,C=110°;
(4)b=25,c=12,C=23°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)非零向量$\overrightarrow{a}$=(x,2x),$\overrightarrow$=(-3x,2),且$\overrightarrow{a}$,$\overrightarrow$的夾角為鈍角,則x的取值范圍是( 。
A.(-∞,0)B.($\frac{4}{3}$,0)
C.(-∞,0)∪($\frac{4}{3}$,0)D.(-∞,-$\frac{1}{3}$)∪(-$\frac{1}{3}$,0)∪($\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\left\{\begin{array}{l}x+y-1≥0\\ x+2y-4≤0\\ x-y-1≤0\end{array}\right.$,則$\frac{y+1}{x+3}$的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.下列命題中,所有正確命題的序號(hào)為①②③④
 ①若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則$\overrightarrow{n_1}$∥$\overrightarrow{n_2}$?α∥β
 ②若$\overrightarrow{n_1}、\overrightarrow{n_2}$分別是平面α、β的法向量,則α⊥β?$\overrightarrow{n_1}•\overrightarrow{n_2}=0$
 ③若$\overrightarrow n$是平面α的法向量,$\overrightarrow a$與α共面,則$\overrightarrow n$⊥$\overrightarrow a$.
 ④若兩個(gè)平面的法向量不垂直,則這兩個(gè)平面一定不垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為直角坐標(biāo)系原點(diǎn),P,Q的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}4x+3y-25≤0\\ x-2y+2≤0\\ x-1≥0\end{array}\right.$,則cos∠POQ的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案