點(diǎn)Q為雙曲線x2-4y2=16上任一點(diǎn),定點(diǎn)A(0,4),求內(nèi)分數(shù)學(xué)公式所成比為數(shù)學(xué)公式的點(diǎn)P的軌跡.

解:設(shè)P(x,y)、Q(x′,y′),由題意可知,即:,所以,
因?yàn)镼(x′,y′)在拋物線上,所以(-x)2-4(-y+8)2=16
所以點(diǎn)M的軌跡方程為:x2-4(y-8)2=16
分析:設(shè)出P、Q的坐標(biāo),利用點(diǎn)P分所成的比為,求出Q的坐標(biāo),代入雙曲線x2-4y2=16化簡(jiǎn)即可.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查圓錐曲線的軌跡方程的求法,注意相關(guān)點(diǎn)法的應(yīng)用,常考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)Q為雙曲線x2-4y2=16上任一點(diǎn),定點(diǎn)A(0,4),求內(nèi)分
AQ
所成比為
1
2
的點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科做(1)(2)(4),理科全做)
已知過(guò)拋物線C1:y2=2px(p>0)焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn) 
(1)證明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)點(diǎn)Q為線段AB的中點(diǎn),求點(diǎn)Q的軌跡方程;
(3)若x1=1,x2=4,以坐標(biāo)軸為對(duì)稱軸的橢圓或雙曲線C2過(guò)A、B兩點(diǎn),求曲線C1和C2的方程;
(4)在(3)的條件下,若曲線C2的兩焦點(diǎn)分別為F1、F2,線段AB上有兩點(diǎn)C(x3,y3),D(x4,y4)(x3<x4),滿足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在線段F1 F2上是否存在一點(diǎn)P,使PD=
11
,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過(guò)點(diǎn)(2,4)作直線與拋物線y2=8x有且只有一個(gè)公共點(diǎn),這樣的直線有2條;
②過(guò)拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過(guò)點(diǎn)(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個(gè)公共點(diǎn),這樣的直線有3條;
④過(guò)雙曲線x2-
y2
2
=1
的右焦點(diǎn)作直線l交雙曲線于A,B兩點(diǎn),若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點(diǎn)A(1,1),過(guò)點(diǎn)A能作一條直線l,使它與雙曲線交于P,Q兩點(diǎn),且點(diǎn)A恰為線段PQ的中點(diǎn).
其中說(shuō)法正確的序號(hào)有
①②④
①②④
.(請(qǐng)寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第8章 圓錐曲線):8.8 求軌跡方程(二)(解析版) 題型:解答題

點(diǎn)Q為雙曲線x2-4y2=16上任一點(diǎn),定點(diǎn)A(0,4),求內(nèi)分所成比為的點(diǎn)P的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案