如圖,過(guò)拋物線x2=4y焦點(diǎn)的直線依次交拋物線與圓x2+(y-1)2=1于點(diǎn)A、B、C、D,則的值是   
【答案】分析:設(shè)A、D的坐標(biāo)分別為(x1,y1),(x2,y2)及直線方程,聯(lián)立直線和拋物線的方程求出y1•y2,y1+y2,
并用y1,y2表示AF,F(xiàn)D,而所求==(AF-1)(FD-1),代入
上述式子中即可.
解答:解:設(shè)A、D的坐標(biāo)分別為(x1,y1),(x2,y2),依題意知焦點(diǎn)F(0,1),則設(shè)直線AD方程為:y=kx+1,
聯(lián)立消去x,得y2-(2+4k2)y+1=0,
∴y1+y2=2+4k2,y1•y2=1
又根據(jù)拋物線定義得AF=,F(xiàn)D=,∴AF=y1+1,F(xiàn)D=y2+1
==(AF-1)(FD-1)
=y1•y2=1.
故答案為1
點(diǎn)評(píng):此題設(shè)計(jì)構(gòu)思比較新穎,考查拋物線的定義及巧妙將向量數(shù)量積轉(zhuǎn)化,
同時(shí)在解答過(guò)程中處理直線和拋物線的關(guān)系時(shí)運(yùn)用了設(shè)而不求的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)拋物線x2=4y的對(duì)稱軸上任一點(diǎn)P(0,m)(m>0)作直線與拋物線交于A,B兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn).
(I)設(shè)點(diǎn)P分有向線段
AB
所成的比為λ,證明:
QP
⊥(
QA
QB
)

(Ⅱ)設(shè)直線AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)拋物線x2=4y的對(duì)稱軸上任一點(diǎn)P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點(diǎn).
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2
;
(II)在(I)條件下,若點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)對(duì)稱點(diǎn),證明:
QP
⊥(
QA
QB
)
;
(III)設(shè)直線AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)拋物線x2=4y焦點(diǎn)的直線依次交拋物線與圓x2+(y-1)2=1于點(diǎn)A、B、C、D,則
AB
CD
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興模擬)如圖,過(guò)拋物線x2=4y焦點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn)(A在第一象限),點(diǎn)C(0,t)(t>1).
(I)若△CBF,△CFA,△CBA的面積成等差數(shù)列,求直線l的方程;
(II)若|AB|∈(
9
2
,
64
7
)
,且∠FAC為銳角,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年湖南省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,過(guò)拋物線x2=4y的對(duì)稱軸上任一點(diǎn)P(0,m)(m>0)作直線與拋物線交于A,B兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn).
(I)設(shè)點(diǎn)P分有向線段所成的比為λ,證明:
(Ⅱ)設(shè)直線AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案