拋物線x2=4y的焦點為F,過點(0,-1)作直線L交拋物線A、B兩點,再以AF、BF為鄰邊作平行四邊形FARB,試求動點R的軌跡方程.

 

【答案】

動點R的軌跡方程為x2=4(y+3)( ).

【解析】設(shè)R(x,y),∵F(0,1), ∴平行四邊形FARB的中心為,L:y=kx-1,代入拋物線方程得x2-4kx+4=0, 設(shè)A(x1,y1),B(x2,y2),則x1+x2=4k,x1x2=4,且△=16k2-16>0,即|k|>1    ①,

,∵C為AB的中點.

∴   

,消去k得x2=4(y+3),由① 得,,故動點R的軌跡方程為x2=4(y+3)( ).

考點:求動點的軌跡方程。

點評:求軌跡方程時,一般先設(shè)所求點為,再把代入題中的已知條件,然后消去參數(shù),得所求的軌跡方程。本題中,利用點既是FR的中點,又是AB的中點來求。由△=16k2-16>0,得|k|>1 從而得是比較容易遺漏的一點。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

拋物線有光學性質(zhì): 由其焦點射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0)  一光源在點M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l: 2x-4y-17=0上的點N,再折射后又射回點M(如下圖所示)

 (1)設(shè)P、Q兩點坐標分別為(x1,y1)、(x2,y2),證明:y1·y2=-p2

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關(guān)于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線有光學性質(zhì):由其焦點射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出,今有拋物線y2=2px(p>0).一光源在點M(,4)處,由其發(fā)出的光線沿平行于拋物線的軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線的軸的方向射出,途中遇到直線l:2x-4y-17=0上的點N,再折射后又射回點M(如圖所示).

(1)設(shè)P、Q兩點坐標分別為(x1,y1)、(x2,y2),證明y1·y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關(guān)于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線有光學性質(zhì):由其焦點射出的光線經(jīng)拋物線折射后,沿平行于拋物線對稱軸的方向射出.今有拋物線y2=2px(p>0),一光源在點M(,4)處,由其發(fā)出的光線沿平行于拋物線對稱軸的方向射向拋物線上的點P,折射后又射向拋物線上的點Q,再折射后,又沿平行于拋物線對稱軸的方向射出,途中遇到直線l:2x-4y-17=0上的點N,再折射后又射回點M(如圖所示).

(1)設(shè)P、Q兩點的坐標分別為(x1,y1),(x2,y2),證明:y1y2=-p2;

(2)求拋物線的方程;

(3)試判斷在拋物線上是否存在一點,使該點與點M關(guān)于PN所在的直線對稱?若存在,請求出此點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案