已知空間四邊形ABCD的對(duì)角線為AC、BD,設(shè)G是CD的中點(diǎn),則
AB
+
1
2
BD
+
BC
)等于( 。
A.
BC
B.
CG
C.
AG
D.
1
2
BC
精英家教網(wǎng)
因?yàn)镚是CD的中點(diǎn);
BG
=
1
2
BD
+
BC
),
AB
+
1
2
BD
+
BC
)=
AB
+
BG
=
AG

故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn),求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省高三12月月考文科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,已知空間四邊形ABCD中,BC=AC, AD=BD,E是AB的中點(diǎn),

求證:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G為△ADC的重心,試在線段AB上確定一點(diǎn)F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案