,其中a,b為實(shí)數(shù),i是虛數(shù)單位,則a+bi=( )
A.1+2i
B.1-2i
C.2+i
D.2-i
【答案】分析:由題意可得b=1+a+(a-1)i,由復(fù)數(shù)相等可得,解之即可.
解答:解:∵,∴b=(1-i)(1+ai),
化簡(jiǎn)得b=1+a+(a-1)i,由復(fù)數(shù)相等可得,
解得,故a+bi=1+2i,
故選A
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和復(fù)數(shù)相等的定義,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax2-bx,其中a,b為實(shí)數(shù),
(1)若f(x)在x=1處取得的極值為2,求a,b的值;
(2)若f(x)在區(qū)間[-1,2]上為減函數(shù),且b=9a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•溫州一模)設(shè)f(x)=ax+b(其中a,b為實(shí)數(shù)),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若2a+b=-2,且fk(x)=-243x+244,則k=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知復(fù)數(shù)z是方程x2+2x+2=0的解,且 Imz>0,若數(shù)學(xué)公式(其中a、b為實(shí)數(shù),i為虛數(shù)單位,Imz表示z的虛部).求復(fù)數(shù)w=a+bi的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知復(fù)數(shù)z是方程x2+2x+2=0的解,且 Imz>0,若(其中a、b為實(shí)數(shù),i為虛數(shù)單位,Imz表示z的虛部).求復(fù)數(shù)w=a+bi的模.

查看答案和解析>>

同步練習(xí)冊(cè)答案