若正方體的棱長為,則以該正方體各個面的中心為頂點的凸多面體的體積為 (   )

A.             B.             C.             D.

 

【答案】

B

【解析】

試題分析:解:所求八面體體積是兩個底面邊長為1,高為, 的四棱錐的體積和,一個四棱錐體積V1=,故八面體體積V=2V1=,故選B.

考點:棱錐的體積

點評:本題是基礎(chǔ)題,開心棱錐的體積,正方體的內(nèi)接多面體,體積的求法常用轉(zhuǎn)化思想,變?yōu)橐浊蟮膸缀误w的體積,考查計算能力

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若正方體的棱長為,則以該正方體各個面的中心為頂點的凸多面體的體積為     

(A)               (B)            (C)          (D)      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體 中,是上底面中心,若正方體的棱長為,則三棱錐的體積為_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009陜西卷文)若正方體的棱長為,則以該正方體各個面的中心為頂點的凸多面體的體積為 

(A)             (B)            (C)       (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009陜西卷文)若正方體的棱長為,則以該正方體各個面的中心為頂點的凸多面體的體積為 

(A)             (B)            (C)       (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正方體的棱長為,則以該正方體各個面的中心為頂點的凸多面體的體積為(  )

A.                               B.   

C.                               D.

查看答案和解析>>

同步練習(xí)冊答案