已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當(dāng)x時(shí),f(x)<2x.
(1)令x1=x2=0,依條件(3)可得f(0+0)≥2f(0),即f(0)≤0 又由條件(1)得f(0)≥0 故f(0)=0 4分 (2)任取0≤x122≤1可知x2-x1(0,1],則 f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)≥f(x1) 于是當(dāng)0≤x≤1時(shí),有f(x)≤f(1)=1因此當(dāng)x=1時(shí),f(x)取最大值1. 9分 (3)證明:當(dāng)x時(shí),f(x)≤f(1)=1 當(dāng)x時(shí),<2x≤1,f(2x)≤1,f(2x)≥f(x)+f(x)=2f(x) ∴f(x)≤f(2x)≤<2x 即f(x)<2x. 14分 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2n |
1 |
2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com