5.已知函數(shù)y=-x2+mx-2,x∈[0,5],在x=2處取得最大值.
(1)求m的值,并寫出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的最大值、最小值.

分析 (1)先表示出函數(shù)的對稱軸,求出m的值即可求出函數(shù)的解析式,從而求出函數(shù)的單調(diào)區(qū)間;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最值即可.

解答 解:(1)y=-x2+mx-2,x∈[0,5],在x=2處取得最大值.
∴-$\frac{m}{2×(-1)}$=2,解得:m=4,
∴y=-x2+4x-2,
函數(shù)在[0,2)遞增,在(2,5]遞減;
(2)由(1)得:函數(shù)在[0,2)遞增,在(2,5]遞減,
∴x=2時,函數(shù)取得最大值:y|x=2=-2×4+8-2=-2,
x=5時,函數(shù)取得最小值:y|x=5=-2×25+20-2=-32.

點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中為偶函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=lg|x|C.y=(x-1)2D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三棱錐ABCD中,點(diǎn)M,N分別是△ABC和△ACD的重心,求證:MN∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(sinx)=cosx,求f(cosx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若關(guān)于x的不等式sinx>|t-2|存在實(shí)數(shù)解,則實(shí)數(shù)t的取值范圍是( 。
A.(-∞,-1)∪(2,+∞)B.(1,2)C.(1,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.①當(dāng)α∈(0,$\frac{π}{2}$),求證:sinα<α<tanα;
①當(dāng)α∈(0,$\frac{π}{2}$),求證:sinα+cosα>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若AB為拋物線y2=4x的弦,且A(x1,4),B(x2,2),則|AB|=( 。
A.13B.$\sqrt{13}$C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(cosθ-sinθ)=6.
(I)在曲線C上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值;
(Ⅱ)過點(diǎn)M(-1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

同步練習(xí)冊答案