當x∈(-1,1)時,函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x)的解析式.
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:換元法:令x=-x,換元整理后,然后和已知條件構(gòu)成方程組,解得即可.
解答: 解:∵2f(x)-f(-x)=lg(x+1),①
令x=-x,
則2f(-x)-f(x)=lg(-x+1)②
由①②構(gòu)成方程組,
2f(x)-f(-x)=lg(x+1)
2f(-x)-f(x)=lg(-x+1)

解得f(x)=
1
3
log(-x3-x2+x+1)
點評:本題考查的知識點是函數(shù)解析式的求解及常用方法,步驟及適用范圍是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)=x3+3x2+a在(-∞,0]上有兩個零點,則實數(shù)a的取值范圍是( 。
A、(-4,0]
B、[-4,0]
C、[0,4)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知100件產(chǎn)品中有97件正品和3件次品,現(xiàn)從中任意抽出3件產(chǎn)品進行檢查,則恰好抽出2件次品的抽法種數(shù)是( 。
A、C
 
2
3
C
 
1
98
B、A
 
2
3
A
 
1
98
C、C
 
2
3
C
 
1
97
D、A
 
2
3
A
 
1
97

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
y2
a2
+
x2
b2
=1(a>b>0)的兩焦點為F1(0,-c),F(xiàn)2(0,c)(c>0),離心率e=
3
2
,焦點到橢圓上點的最短距離為2-
3
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3-1的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*),求{bn}的通項公式bn
(Ⅲ)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=a(a∈N*),Sn=pan+1(p≠0,p≠-1,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)對任意k∈N*,若將ak+1,ak+2,ak+3按從小到大的順順序排列后,此三項均能構(gòu)成等差數(shù)列,且記公差為dk
(i)求p的值以及數(shù)列{dk}的通項公式;
(ii)記數(shù)列{dk}的前k項和為Sk,問是否存在正整數(shù)a,使得Sk<30恒成立,若存在,求出a的最大值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)從兩個文藝組中各抽一名組員完成一項任務,第一小組由甲,乙,丙三人組成,第二小組由丁,戊兩人組成.
(1)列舉出所有抽取的結(jié)果;
(2)求甲不會被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-lnx-
1
x
,a∈R
(1)當f(x)在點(1,f(1))處的切線與x軸平行時,求a的值,并求此時y=f′(x)的最小值;
(2)若g(x)=xf(x),其方程g′(x)=0有實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)×f(y)=f(xy),f(x)≠0.求證:f(x)×f(
1
x
)=1.

查看答案和解析>>

同步練習冊答案