已知函數(shù)滿足對一切都有,且,當時有.
(1)求的值;
(2)判斷并證明函數(shù)上的單調性;
(3)解不等式:.

(1)  
(2)利用函數(shù)的定義法來證明函數(shù)單調性,注意設變量的任意性,以及作差法,變形定號,下結論的步驟。
(3)

解析試題分析:解:⑴令,得 ,
再令,得 ,
,從而 .         2分
⑵任取
        4分
.  
,即.
上是減函數(shù).         6分
⑶由條件知,,    
,則,即,
整理,得  ,         8分
,不等式即為,
又因為上是減函數(shù),,即,      10分
,從而所求不等式的解集為.    12分
考點:抽象函數(shù)的性質
點評:解決的關鍵是利用賦值法思想求值,同時借助于函數(shù)單調性定義證明單調性,從而解不等式。屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中。
(1)當a=1時,求它的單調區(qū)間;
(2)當時,討論它的單調性;
(3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若時,取得極值,求實數(shù)的值;   
(2)求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)求函數(shù)的定義域;(6分)
(2)求函數(shù)上的值域.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f (x)的定義域為M,具有性質P:對任意xM,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意xM,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意xM,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤cd(1)及無窮多個正整數(shù)n,滿足d(n)=c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且對任意的實數(shù)都有成立.
(1)求實數(shù)的值;
(2)利用函數(shù)單調性的定義證明函數(shù)在區(qū)間上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x|x-2|.
(1)寫出f(x)的單調區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)生物體死亡后,它機體內原有的碳14會按確定的規(guī)律衰減,大約每經過5730年衰減為原來的一半,這個時間稱為“半衰期”.
(Ⅰ)設生物體死亡時體內每克組織中的碳14的含量為1,根據(jù)上述規(guī)律,寫出生物體內碳14的含量與死亡年數(shù)之間的函數(shù)關系式;
(Ⅱ)湖南長沙馬王堆漢墓女尸出土時碳14的殘余量約占原始含量的76.7℅,試推算馬王堆漢墓的年代.(精確到個位;輔助數(shù)據(jù):

查看答案和解析>>

同步練習冊答案