已知條件P:(x-1)2+(y-1)2=0,條件Q:(x-1)•(y-1)=0,那么P是Q的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】分析:充分不必要條件.因為條件P即為x=1且y=1,可得條件Q成立;反之條件Q:(x-1)•(y-1)=0,即為x=1或y=1.前者可以推出后者,但后者推不出前者
解答:解:條件P即為x=1且y=1,可得條件Q成立;
反之條件Q:(x-1)•(y-1)=0,即為x=1或y=1,不能推出條件P成立,
故選A.
點評:本題主要考查充要條件的判斷,解題的關(guān)鍵是利用定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x2+x+1≤0  條件q:x2+2x-3>0,則¬q是¬p 的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:
1
2
≤x≤1
,條件q:x2-(2a+1)x+a(a+1)≤0,若p是q充分不必要條件,則a的取值范圍是
0≤a≤
1
2
0≤a≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件P:(x-1)2+(y-1)2=0,條件Q:(x-1)•(y-1)=0,那么P是Q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:(x+1)2>4,條件q:x>a,且¬p是¬q的充分而不必要條件,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:(x+1)2>4,條件q:x>a,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、a≥1B、a≤1?C、a≥-3?D、a≤-3?

查看答案和解析>>

同步練習(xí)冊答案