(2009北京理)(本小題共14分)
已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)是圓上動(dòng)點(diǎn)處的切線(xiàn),與雙曲線(xiàn)交
于不同的兩點(diǎn),證明的大小為定值.
【解法1】本題主要考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程、圓的切線(xiàn)方程等基礎(chǔ)知識(shí),考查曲線(xiàn)和方程
的關(guān)系等解析幾何的基本思想方法,考查推理、運(yùn)算能力.
(Ⅰ)由題意,得,解得,
∴,∴所求雙曲線(xiàn)的方程為.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線(xiàn)方程為,
化簡(jiǎn)得.
由及得,
∵切線(xiàn)與雙曲線(xiàn)C交于不同的兩點(diǎn)A、B,且,
∴,且,
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∵,且
,
.
∴ 的大小為.
【解法2】(Ⅰ)同解法1.
(Ⅱ)點(diǎn)在圓上,
圓在點(diǎn)處的切線(xiàn)方程為,
化簡(jiǎn)得.由及得
①
②
∵切線(xiàn)與雙曲線(xiàn)C交于不同的兩點(diǎn)A、B,且,
∴,設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,
則,
∴,∴ 的大小為.
(∵且,∴,從而當(dāng)時(shí),方程①和方程②的判別式均大于零).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)是圓上動(dòng)點(diǎn)處的切線(xiàn),與雙曲線(xiàn)交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6.(2009北京理)點(diǎn)在直線(xiàn)上,若存在過(guò)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)設(shè)是偶函數(shù),若曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為1,則該曲線(xiàn)在處的切線(xiàn)的斜率為_(kāi)________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)是圓上動(dòng)點(diǎn)處的切線(xiàn),與雙曲線(xiàn)交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com