(2013•豐臺區(qū)二模)若雙曲線C:
x2
a2
-
y2
3
=1(a>0)
的離心率為
2
,則拋物線y2=8x的焦點到C的漸近線距離是
2
2
分析:通過雙曲線的離心率求出a,然后求出漸近線方程,求出拋物線的焦點坐標,利用點到直線的距離求解即可.
解答:解:因為雙曲線C:
x2
a2
-
y2
3
=1(a>0)
的離心率為
2
,所以
c
a
=
2
,又b=
3
,所以a=
3
,
雙曲線的漸近線方程為:y=±x,拋物線y2=8x的焦點坐標為:(2,0),
由點到直線的距離公式可得:
|2|
2
=
2

故答案為:
2
點評:本題考查雙曲線與拋物線的基本性質(zhì)的應用,點到直線的距離公式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)已知偶函數(shù)f(x)(x∈R),當x∈(-2,0]時,f(x)=-x(2+x),當x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當a=2,m=0時,直線l與圖象G恰有3個公共點;
②當a=3,m=
1
4
時,直線l與圖象G恰有6個公共點;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)若函數(shù)f(x)=ax(a>0,a≠1)在[-2,1]上的最大值為4,最小值為m,則m的值是
1
16
1
2
1
16
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)已知橢圓C:
x2
4
+y2=1
的短軸的端點分別為A,B,直線AM,BM分別與橢圓C交于E,F(xiàn)兩點,其中點M (m,
1
2
) 滿足m≠0,且m≠±
3

(Ⅰ)求橢圓C的離心率e;
(Ⅱ)用m表示點E,F(xiàn)的坐標;
(Ⅲ)若△BME面積是△AMF面積的5倍,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)已知偶函數(shù)f(x)(x∈R),當x∈(-2,0]時,f(x)=-x(2+x),當x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當a=4時,存在直線l與圖象G恰有5個公共點;
②若對于?m∈[0,1],直線l與圖象G的公共點不超過4個,則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)下列四個函數(shù)中,最小正周期為π,且圖象關于直線x=
π
12
對稱的是( 。

查看答案和解析>>

同步練習冊答案