直線與圓x2+y2=1相交于A、B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值為( )
A.0
B.
C.
D.
【答案】分析:根據(jù)題意畫出圖形,過O作OC垂直于弦AB,由△AOB是直角三角形且|OA|=|OB|=1,可得此三角形為等腰直角三角形,根據(jù)等腰三角形的三線合一可得C為斜邊AB的中點(diǎn),利用勾股定理求出|AB|的長,根據(jù)直角三角形斜邊上的中線等于斜邊的半徑可求出|OC|的長,然后利用點(diǎn)到直線的距離公式表示出圓心到已知的直線的距離,令求出的距離等于求出的|OC|的長,可得a與b的關(guān)系式,從而用b表示出a且得到b的范圍,最后利用兩點(diǎn)間的距離公式表示出所求兩點(diǎn)間的距離d,把表示出的a代入得到關(guān)于b的二次三項(xiàng)式,設(shè)被開方數(shù)為f(b),可得此函數(shù)為開口向上,且對稱軸為x=2的拋物線,根據(jù)b的范圍判定得到函數(shù)為減函數(shù),把b的最大值代入d可求出d的最小值.
解答:解:根據(jù)題意畫出圖形,如圖所示:
過O作OC⊥AB,因?yàn)椤鰽OB為等腰直角三角形,所以O(shè)為弦AB的中點(diǎn),
又|OA|=|OB|=1,根據(jù)勾股定理得:|AB|=,
∴|OC|=|AB|=,
∴圓心到直線的距離為=,即2a2+b2=2,即a2=-b2+1,
∴-≤b≤,
則點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離d===,
設(shè)f(b)=b2-2b+2,此函數(shù)為對稱軸為x=2的開口向上的拋物線,
∴當(dāng)-≤b≤<2時(shí),函數(shù)為減函數(shù),
∵f()=3-2
∴d的最小值為==-1.
故選C
點(diǎn)評:此題考查了直線與圓的位置關(guān)系,涉及的知識有等腰直角三角形的性質(zhì),點(diǎn)到直線的距離公式,兩點(diǎn)間的距離公式,以及二次函數(shù)的圖象與性質(zhì),利用了數(shù)形結(jié)合及函數(shù)的數(shù)學(xué)思想,其中表示出所求的距離d,由自變量b的范圍,根據(jù)二次函數(shù)的圖象與性質(zhì)判斷得出函數(shù)f(b)為減函數(shù)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、過原點(diǎn)的直線與圓x2+y2-2x-4y+4=0相交所得的弦長為2,則該直線的方程為
2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)滿足
x+y≤4
y≥x
x≥1
,過點(diǎn)P的直線與圓x2+y2=14相交于A,B兩點(diǎn),則|AB|的最小值為(  )
A、2
B、2
6
C、2
5
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)的直線與圓x2+y2+4x+3=0相切,若切點(diǎn)在第三象限,則該直線的方程是
y=
3
3
x
y=
3
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)的直線與圓x2+y2-6x+5=0相交于A、B兩點(diǎn),求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過A(1,1)可作兩條直線與圓x2+y2+kx-2y+
5
4
k=0
相切,則k的范圍為( 。

查看答案和解析>>

同步練習(xí)冊答案