分析 (I)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程,圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式可得直角坐標(biāo)方程.
(II)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓C的方程可得:t2+2t=0,可得|MN|=|t1-t2|.
解答 解:(I)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得:$\sqrt{3}$x-y-4$\sqrt{3}$=0,
圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標(biāo)方程:x2+y2=4x.
(II)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入圓C的方程可得:t2+2t=0,解得t1=0,t2=-2.
∴|MN|=|t1-t2|=2.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系、弦長(zhǎng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{2}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度 | D. | 向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{3}$或2 | C. | 2 | D. | 2或 $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\;\frac{1}{2}}]$ | B. | $({0,\;\frac{1}{3}}]$ | C. | $({0,\;\frac{1}{4}}]$ | D. | $[{\frac{1}{4},\;\;\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com