(本小題滿分12分)如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,平面,M,N分別為AB,SB的中點(diǎn).

(1)求證:
(2)求二面角的余弦值.
(1)見(jiàn)解析;(2)余弦值為
本試題主要是考查了立體幾何中垂直的證明,以及二面角的求解的綜合運(yùn)用。
(1)(利用線面垂直的性質(zhì)定理得到線線垂直,這是一般證明的方法和解題四輪。關(guān)鍵是證明平面,得到
(2)合理的建立空間直角坐標(biāo)系,然后表示平面的法向量和法向量的夾角,從而得到二面角的余弦值的大小。
解:(1)取的中點(diǎn)O,連接
又平面平面,且平面平面
平面.     又………………………2分
如圖所示,建立空間直角坐標(biāo)系,

則A(2,0,0),B(0,,0),C(-2,0,0),S(0,0,),M(1,,0),
N(0,,).……4分
,
………………………6分
(2)由(1)得.設(shè)為平面的一個(gè)法向量,
,取.…………………………8分
.又為平面的一個(gè)法向量,
……………………………………………………12分
二面角的余弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知正四棱錐的底面邊長(zhǎng)為,中點(diǎn).

(Ⅰ)求證://平面;
(Ⅱ)若是二面角的平面角,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱中,平面,, 點(diǎn)在線段上,且,

(Ⅰ)求證:直線與平面不平行;
(Ⅱ)設(shè)平面與平面所成的銳二面角為,若,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,設(shè)平面平面,求直線所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,是直角三角形,,于點(diǎn),平面,
(1)證明:;
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,,是空間三條不同的直線,則下列命題正確的是(  )
A.,
B.,
C.,,共面
D.,,共點(diǎn),,共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐中,底面,,,,
,的中點(diǎn).
(1)  證明:
(2)  證明:平面;
(3)  求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

線段AB,CD在兩條異面直線上,M,N分別是AB,CD的中點(diǎn),則一定有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面四個(gè)命題,正確的是(      )
A.己知直線a,b平面α,直線c平面β,若c⊥a,c⊥b,則平面α⊥平面β
B.若直線a平行平面α內(nèi)的無(wú)數(shù)條直線,則直線a//平面α;
C.若直線a垂直直線b在平面a內(nèi)的射影,則直線a⊥b
D.若直線a, b. c兩兩成異面直線,則一定存在直線與a,b,c都相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是(   )
A.若,,則;
B.若,則
C.若,,,則;
D.若,,,則.

查看答案和解析>>

同步練習(xí)冊(cè)答案