已知在平面直角坐標(biāo)系xOy內(nèi),點(diǎn)P(x,y)在曲線C:為參數(shù),θ∈R)上運(yùn)動.以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(Ⅰ)寫出曲線C的標(biāo)準(zhǔn)方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),點(diǎn)M在曲線C上移動,試求△ABM面積的最大值.
【答案】分析:(1)先將原極坐標(biāo)方程利用三角函數(shù)的和角公式后再化成直角坐標(biāo)方程,再利用消去參數(shù)θ得到曲線C的直角坐標(biāo)方程.
(2)欲求△ABM面積的最大值,由于AB一定,故只要求AB邊上的高最大即可,根據(jù)平面幾何的特征,當(dāng)點(diǎn)M在過圓心且垂直于AB的直線上時(shí),距離AB最遠(yuǎn),據(jù)此求面積的最大值即可.
解答:解:(1)消去參數(shù)θ,得曲線C的標(biāo)準(zhǔn)方程:(x-1)2+y2=1.
得:ρcosθ-ρsinθ=0,
即直線l的直角坐標(biāo)方程為:x-y=0.
(2)圓心(1,0)到直線l的距離為,
則圓上的點(diǎn)M到直線的最大距離
(其中r為曲線C的半徑),.設(shè)M點(diǎn)的坐標(biāo)為(x,y),
則過M且與直線l垂直的直線l'方程為:x+y-1=0,
則聯(lián)立方程,
解得,或,
經(jīng)檢驗(yàn)舍去.
故當(dāng)點(diǎn)M為時(shí),△ABM面積的最大值為(S△ABMmax=
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,以及利用平面幾何知識解決最值問題.利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系xOy內(nèi),點(diǎn)P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數(shù),θ∈R)上運(yùn)動.以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標(biāo)準(zhǔn)方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),點(diǎn)M在曲線C上移動,試求△ABM面積的最大值,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A(1,
1
2
)
,若P是橢圓上的動點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)已知在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以ox為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
6
)
=0,則圓C截直線l所得的弦長為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動點(diǎn)M(x,y)滿足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則z=
OM
OC
的最大值為( 。
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(1,
1
2
)

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P是橢圓上的動點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點(diǎn)O并且交橢圓于點(diǎn)B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案