已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號按依次增加10進行系統(tǒng)抽樣.

(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.
(1)第3組02,12,22,32,42,52,62,72,82,92. (2)  (3)

試題分析:
(1)根據(jù)系統(tǒng)抽樣的方式,可以得到100名學(xué)生要分10組,每組10人,每組抽取一人,第三組編號為20-29,故22號為第三組學(xué)生,因為間隔為10,所以22依次加或者減10即可得到各組被抽到學(xué)生的編號.
(2)首先根據(jù)莖葉圖可得還原這10名學(xué)生的成績,然后求的平均數(shù),10名學(xué)生的成績分別減去平均數(shù)的平方和再除以10即為方差.
(3)根據(jù)莖葉圖可得成績不低于73分的學(xué)生有5名,首先列出五選二的所有的基本事件共有10種,即為(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81),而成績之差不小于154分的有7種,再根據(jù)古典概型的概率計算公式即可求的相應(yīng)的概率.
試題解析:
(1)由題意,得抽出號碼為22的組數(shù)為3.                        (2分)
因為2+10×(3-1)=22,所以第1組抽出的號碼應(yīng)該為02,抽出的10名學(xué)生的號碼依次分別為:02,12,22,32,42,52,62,72,82,92.                  (4分)
(2)這10名學(xué)生的平均成績?yōu)椋?
×(81+70+73+76+78+79+62+65+67+59)=71,            (6分)
故樣本方差為:(102+12+22+52+72+82+92+62+42+122)=52. (8分)
(3)從這10名學(xué)生中隨機抽取兩名成績不低于73分的學(xué)生,共有如下10種不同的取法:
(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).               (10分)
其中成績之和不小于154分的有如下7種:(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).                      (12分)
故被抽取到的兩名學(xué)生的成績之和不小于154分的概率為:      (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下表是對某市8所中學(xué)學(xué)生是否吸煙進行調(diào)查所得的結(jié)果:
 
吸煙學(xué)生
不吸煙學(xué)生
父母中至少有一人吸煙
816
3 203
父母均不吸煙
188
1 168
(1)在父母至少有一人吸煙的學(xué)生中,估計吸煙學(xué)生所占的百分比是多少?
(2)在父母均不吸煙的學(xué)生中,估計吸煙學(xué)生所占的百分比是多少?
(3)學(xué)生的吸煙習(xí)慣和父母是否吸煙有關(guān)嗎?請簡要說明理由.
(4)有多大的把握認為學(xué)生的吸煙習(xí)慣和父母是否吸煙有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

大家知道,莫言是中國首位獲得諾貝爾獎的文學(xué)家,國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對莫言作品的了解程度,結(jié)果如下:
閱讀過莫言的
作品數(shù)(篇)
0~25
26~50
51~75
76~100
101~130
男生
3
6
11
18
12
女生
4
8
13
15
10
(1)試估計該校學(xué)生閱讀莫言作品超過50篇的概率;
(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關(guān)?
 
非常了解
一般了解
合計
男生
 
 
 
女生
 
 
 
合計
 
 
 
附:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為調(diào)查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如下表所示:

(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中隨機抽取2人作進一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間





人數(shù)

a
b
 
 
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時的社區(qū)服務(wù)才合格.教育部門在全市隨機抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段,,,
,(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù),并估計
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時間不少于90小時的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時間不少于90小時的人數(shù).試求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( )
①利用殘差進行回歸分析時,若殘差點比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說明線性回歸模型的擬合精度較高;
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,期望與方差均沒有變化;
③調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進行調(diào)查是分層抽樣法;
④已知隨機變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于0.158 7
⑤某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為7人,則樣本容量為15人。
A.2B.3C.4 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下四個命題,其中正確的是________.
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每20分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;
②兩個隨機變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1;
③在回歸直線方程=0.2x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量平均增加0.2個單位;
④對分類變量X與Y,它們的隨機變量K22)的觀測值k來說,k越小,“X與Y有關(guān)系”的把握程度越大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
 
優(yōu)秀
非優(yōu)秀
合計
甲班
10
 
 
乙班
 
30
 
    合計
 
 
110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 

查看答案和解析>>

同步練習(xí)冊答案