解關(guān)于x的不等式|
1
3
x
|>7.
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)絕對值不等式的解法解不等式即可得到結(jié)論.
解答: 解:∵|
1
3
x
|>7,
1
3
x
>7或
1
3
x
<-7,
即x>21或x<-21,
故不等式的解集為{x|x>21或x<-21}.
點評:本題主要考查不等式的解法,利用絕對值不等式的解法是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,若S10=20,S20=30,則S30=( 。
A、35B、40C、45D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+y2=4內(nèi)有一點P(2,1),過點P作直線l交圓C于A、B兩點.
(1)若弦AB的長最大,求直線l的方程;
(2)若
CA
CB
=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,4,5,6},求∁UA∩∁UB;
(2)已知函數(shù)f(x)=
x+3
+log2(x-4),求其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC三邊長為a、b、c,與之對應(yīng)的三條高分別為Ha,Hb,Hc,若滿足關(guān)系:
3a
Ha
-
b
Hb
+
6c
Hc
=6.
(1)求證S=
1
12
(3a2-b2+6c2)(S是△ABC的面積);
(2)試用b、c表示sin(A+45°),并求出角A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對正整數(shù)n,設(shè)xn是關(guān)于x的方程nx3+2x-n=0的實數(shù)根,記an=[(n+1)xn](n=2,3…),(符號[x]表示不超過x的最大整數(shù),如[-2.5]=-3,[5]=5),
(1)求a3的值;
(2)計算:
1
2015
(a2+a3+…+a2016).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是等腰梯形,AD=BC=1,DC=2AB=2PD,∠ADC=60°,PD⊥底面ABCD,試建立空間直角坐標(biāo)系,并表示五個點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點C為圓心的圓經(jīng)過點A(-1,0)和B(3,4),且圓心在直線x+3y-15=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)點P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F(-
3
,0)(c>0)是雙曲線
x2
a2
-
y2
b2
=1
的左焦點,過F且平行于雙曲線漸近線與拋物線y=
x2
6
+
3
2
相切,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案