設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時,f(x)=(
1
2
)1-x
,則其中所有正確命題的序號是
①②④
①②④

①2是函數(shù)f(x)的周期; ②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0; ④當(dāng)x∈[3,4]時,f(x)=(
1
2
)x-3
分析:根據(jù)條件求出函數(shù)的周期,即可判定①的真假,根據(jù)函數(shù)f(x)是定義在R上的偶函數(shù),以及在(0,1)上的單調(diào)性,可判定②的真假,根據(jù)單調(diào)性和周期性可求出函數(shù)的最值,可判定③的真假,最后求出函數(shù)在x∈[3,4]時的解析式即可判定④的真假.
解答:解:∵對任意的x∈R恒有f(x+1)=f(x-1),
∴f(x+2)=f(x)則f(x)的周期為2,故①正確;
∵函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x∈[0,1]時,f(x)=(
1
2
)1-x
,
∴函數(shù)f(x)在(0,1)上是增函數(shù),函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù),故②正確;
∴函數(shù)f(x)的最大值是f(1)=1,最小值為f(0)=
1
2
,故③不正確;
設(shè)x∈[3,4],則4-x∈[0,1],f(4-x)=(
1
2
)
x-3
=f(-x)=f(x),故④正確;
故答案為:①②④
點評:本題考查函數(shù)的奇偶性、周期性、單調(diào)性以及函數(shù)的最值,同時考查了分析問題的能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)
;
(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時,若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案