【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且nan+1=(n+2)Sn , n∈N*
(1)求證:數(shù)列 為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

【答案】
(1)證明:∵nan+1=(n+2)Sn,n∈N*.∴n(Sn+1﹣Sn)=(n+2)Sn,∴ =2× ,

∴數(shù)列 為等比數(shù)列,首項(xiàng)為1,公比為2,


(2)解:由(1)可得: =2n1,∴Sn=n2n1

∴數(shù)列{Sn}的前n項(xiàng)和Tn=1+2×2+3×2n+…+n2n1

∴2Tn=2+2×22+…+(n﹣1)2n1+n2n,

∴﹣Tn=1+2+22+…+2n1﹣n2n= ﹣n2n

∴Tn=(n﹣1)2n+1.


【解析】(1)nan+1=(n+2)Sn , n∈N* . 可得n(Sn+1﹣Sn)=(n+2)Sn , 變形為 =2× ,即可證明.(2)由(1)可得: =2n1 , 可得Sn=n2n1 . 利用“錯(cuò)位相減法”、等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等比數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:),還要掌握數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinxcos2x,下列結(jié)論正確的是(
A.y=f(x)的圖象關(guān)于 對(duì)稱(chēng)
B.y=f(x)的圖象關(guān)于 對(duì)稱(chēng)
C.y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng)
D.y=f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,Sn是其前n項(xiàng)和.已知a1+a3=16,S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)當(dāng)n取何值時(shí)Sn最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量對(duì)岸A,B兩點(diǎn)的距離,沿河岸選取C,D兩點(diǎn),測(cè)得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù) 的圖象,可以將函數(shù) 的圖象( )
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向左平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},{bn}滿(mǎn)足a1=1,a2=2,b1=2,且對(duì)任意的正整數(shù)i,j,k,l,當(dāng)i+j=k+l時(shí),都有ai+bj=ak+bl , 則 的值是(
A.2012
B.2013
C.2014
D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩條直線(xiàn) ,兩個(gè)平面 ,給出下面四個(gè)命題:
, ;② , ;
, ;④ ,
其中正確命題的序號(hào)是( )
A.①④
B.②④
C.①③
D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ )的圖象為M,則下列結(jié)論中正確的是(
A.圖象M關(guān)于直線(xiàn)x=﹣ 對(duì)稱(chēng)
B.由y=2sin2x的圖象向左平移 得到M
C.圖象M關(guān)于點(diǎn)(﹣ ,0)對(duì)稱(chēng)
D.f(x)在區(qū)間(﹣ , )上遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案