在三棱錐SABC中,底面是邊長為2的正三角形,點S在底面ABC上的射影O恰是AC的中點,側(cè)棱SB和底面成45°角.
(1)若D為側(cè)棱SB上一點,當(dāng)為何值時,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
(1)(2)
【解析】以O點為原點,OB為x軸,OC為y軸,OS為z軸建立空間直角坐標(biāo)系O-xyz.
由題意知∠SBO=45°,SO=3.O(0,0,0),C(0,,0),A(0,-,0),S(0,0,3),B(3,0,0).
(1)設(shè)=λ(0≤λ≤1),則=(1+λ)+λ=(3(1+λ),0,3λ),
所以=(3(1-λ),-,3λ).
因為=(3,,0),CD⊥AB,所以·=9(1-λ)-3=0,解得λ=.
故時,CD⊥AB.
(2)平面ACB的法向量為n1=(0,0,1),設(shè)平面SBC的法向量n2=(x,y,z),則n2·=0,n2·=0,則解得取n2=(1,,1),
所以cos〈n1,n2〉==.
又顯然所求二面角的平面角為銳角,故所求二面角的余弦值的大小為.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第4課時練習(xí)卷(解析版) 題型:解答題
某學(xué)校擬建一塊周長為400m的操場,如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第2課時練習(xí)卷(解析版) 題型:填空題
若不等式組所表示的平面區(qū)域被直線y=kx+分為面積相等的兩部分,則k=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第1課時練習(xí)卷(解析版) 題型:解答題
已知f(x)=-3x2+a(6-a)x+b.
(1)解關(guān)于a的不等式f(1)>0;
(2)當(dāng)不等式f(x)>0的解集為(-1,3)時,求實數(shù)a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第1課時練習(xí)卷(解析版) 題型:填空題
不等式3x2-x-4≤0的解集是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:解答題
如圖所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第6課時練習(xí)卷(解析版) 題型:填空題
已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第5課時練習(xí)卷(解析版) 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點F是AB的中點.
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第3課時練習(xí)卷(解析版) 題型:解答題
如圖,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分別為線段AC、A1A、C1B的中點.
(1)證明:EF∥平面ABC;
(2)證明:C1E⊥平面BDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com